TY - JOUR A1 - Syed, A.A. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - De, A. T1 - Modeling of gas metal arc welding process using an analytically determined volumetric heat source JF - ISIJ international N2 - High peak temperature and continuous deposition of electrode droplets in the weld puddle inhibit real-time monitoring of thermal cycles and bead dimensions in gas metal arc welding. A three-dimensional numerical heat transfer model is presented here to compute temperature field and bead dimensions considering a volumetric heat source to account for the transfer of arc energy into the weld pool. The heat source dimensions are analytically estimated as function of welding conditions and original joint geometry. The deposition of electrode material is modeled using deactivation and activation of discrete elements in a presumed V-groove joint geometry. The computed values of bead dimensions and thermal cycles are validated with the corresponding measured results. A comparison of the analytically estimated heat source dimensions and the corresponding numerically computed bead dimensions indicate that the former could rightly serve as the basis for conduction heat transfer based models of gas metal arc welding process. KW - Gas metal arc welding KW - Heat conduction KW - Volumetric heat source KW - Experimental validation PY - 2013 DO - https://doi.org/10.2355/isijinternational.53.698 SN - 0915-1559 SN - 1347-5460 VL - 53 IS - 4 SP - 698 EP - 703 PB - ISIJ AN - OPUS4-28074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, A. A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Laser-MSG-Hybridschweissen und die Ökobilanz: Sieg nach Punkten JF - Laser community - das Laser-Magazin von Trumpf PY - 2015 UR - http://www.laser-community.com/de/11945 IS - 21 SP - 6 PB - Trumpf GmbH + Co. KG CY - Ditzingen AN - OPUS4-35252 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ward, H. A1 - Burger, M. A1 - Chang, Y.-J. A1 - Fürstmann, P. A1 - Neugebauer, S. A1 - Radebach, A. A1 - Sproesser, G. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Uhlmann, E. A1 - Steckel, J. Ch. T1 - Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks JF - Journal of Cleaner Production N2 - Evaluating innovative process technologies has become highly important within the last decades. As standard tools different Life Cycle Assessment methods have been established, which are continuously improved. While those are designed for evaluating single processes they run into difficulties when it comes to assessing environmental impacts of process innovations at macroeconomic level. In this paper we develop a multi-step evaluation framework building on multi regional inputeoutput data that allows estimating macroeconomic impacts of new process technologies, considering the network characteristics of the global economy. Our procedure is as follows: i) we measure differences in material usage of process alternatives, ii) we identify where the standard processes are located within economic networks and virtually replace those by innovative process technologies, iii) we account for changes within economic systems and evaluate impacts on emissions. Within this paper we exemplarily apply the methodology to two recently developed innovative technologies: longitudinal large diameter steel pipe welding and turning of high-temperature resistant materials. While we find the macroeconomic impacts of very specific process innovations to be small, its conclusions can significantly differ from traditional process based approaches. Furthermore, information gained from the methodology provides relevant additional insights for decision makers extending the picture gained from traditional process life cycle assessment. KW - Economic wide technology replacement KW - Sustainability assessment KW - Multi-regional inputeoutput data KW - Life-cycle assessment KW - Greenhouse gas mitigation KW - Process innovations PY - 2017 DO - https://doi.org/10.1016/j.jclepro.2016.02.062 SN - 0959-6526 SN - 1879-1786 VL - 163 SP - 154 EP - 165 PB - Elsevier Ltd. AN - OPUS4-41356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Karkhin, V.A. A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - Makhnenko, V.I. T1 - Heat source models in simulation of heat flow in fusion welding T2 - 5th International Conference - Mathematical modelling and information technologies in welding and related processes (Proceedings) T2 - 5th International Conference - Mathematical modelling and information technologies in welding and related processes CY - vil. Katsiveli, Crimea, Ukraine DA - 2010-05-25 PY - 2010 SN - 978-966-8872-15-0 SP - 56 EP - 60 CY - Kiev, Ukraine AN - OPUS4-23382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -