TY - CONF A1 - Schröder, K. A1 - Ihrke, R. A1 - Meyer-Plath, Asmus A1 - Finke, B. A1 - Diener, A. A1 - Nebe, B. A1 - Ohl, A. ED - d'Agostino, R. T1 - Surface functionalization in ammonia microwave plasmas for biomedical applications T2 - Proceedings of the 16th International Symposium on Plasma Chemistry T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, K. A1 - Meyer-Plath, Asmus A1 - Keller, D. A1 - Ohl, A. T1 - On the Applicability of Plasma Assisted Chemical Micropatterning to Different Polymeric Biomaterials JF - Plasmas and polymers N2 - A plasma process sequence has been developed to prepare chemical micropatterns on polymeric biomaterial surfaces. These patterns induce a guided localized cell layover at microscopic dimension. Two subsequent plasma steps are applied. In the first functionalization step a microwave ammonia plasma introduces amino groups to obtain areas for very good cell adhesion; the second passivation step combines pattern generation and creation of cell repelling areas. This downstream microwave hydrogen plasma process removes functional groups and changes the linkages of polymer chains at the outermost surfaces. Similar results have been obtained on different polymers including polystyrene (PS), polyhydroxyethylmethacrylate (PHEMA), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polyethylenenaphthalate (PEN). Such a rather universal chemical structuring process could widen the availability of biomaterials with specific surface preparations. KW - Microwave plasma KW - Ammonia KW - Hydrogen KW - Polymer surface KW - Cell culture KW - XPS KW - Fluorescence PY - 2002 DO - https://doi.org/10.1023/A:1016239302194 SN - 1084-0184 SN - 1572-8978 VL - 7 IS - 2 SP - 103 EP - 125 PB - Plenum Press CY - New York, NY AN - OPUS4-1729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Finke, B. A1 - Meyer-Plath, Asmus A1 - Schröder, K. A1 - Ohl, A. ED - d'Agostino, R. T1 - Analysis of plasma-generated radicals on polymer surfaces T2 - Proceedings of the 16th International Symposium on Plasma Chemistry N2 - Plasma functionalisation in gas phase like ammonia allows to equip polymer surfaces with amino functional groups. An important question of this functionalisation consists in the limited knowledge about heterogeneous interface reactions, especially radical formation and subsequent reaction processes. Useful analytical methods comparable to those avilable for gas phase reactions are scarce. Here we report on investigations on plasma generated C-radicals by NO-labelling, showing similatr effects for different plasmas. T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM SP - 1 EP - 6(?) PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer-Plath, Asmus A1 - Finke, B. A1 - Schröder, K. A1 - Ohl, A. T1 - Pulsed and cw microwave plasma excitation for surface functionalization in nitrogen-containing gases JF - Surface and coatings technology N2 - Results are presented of polymer surface functionalization processes in pulsed and continuous wave (cw) microwave-excited plasmas in nitrogen-containing gases under admixture of hydrogen. A maximum selectivity of 100% for amino groups with respect to all nitrogen functional groups (NH2/N) was obtained in cw microwave (MW) plasmas either for very short treatment durations below 100 µs in pure NH3, or within approximately 10 s in hydrogen-rich nitrogen-containing plasmas. The amino and overall nitrogen surface densities, NH2/C and N/C, reach up to 3.5% and 35%, respectively. Post plasma processes of functionalized polymers are discussed in the light of monofunctionalization. Down to pulse duration of 1 ms, plasma decomposition rates of NH3, determined by infrared absorption spectroscopy, are found to scale linearly with the duty cycle. In this regime, the main effect of a duty cycle variation in pulsed NH3 plasmas on surface functionalization can be interpreted to result from changes in the concentration of the dominant stable species in the gas phase, NH3, N2 and H2, which are activated by subsequent plasma pulses. With increasing duty cycle, NH3 decomposition to N2 and 3H2 more and more dominates over the supply of fresh NH3. The nitrogen-removing role of hydrogen in the plasma is discussed in detail, whereas the role of the numerous transient nitrogen-containing species remains to be studied in the future. KW - Pulsed microwave plasma KW - Amino group KW - Polymer KW - Ammonia KW - Infrared absorption PY - 2003 DO - https://doi.org/10.1016/S0257-8972(03)00563-2 SN - 0257-8972 VL - 174-175 SP - 877 EP - 881 PB - Elsevier Science CY - Lausanne AN - OPUS4-13512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer-Plath, Asmus A1 - Schröder, K. A1 - Finke, B. A1 - Ohl, A. T1 - Current trends in biomaterial surface functionalization - nitrogen-containing plasma assisted processes with enhanced selectivity JF - Vacuum N2 - Low-pressure gas-discharge plasmas are widely used for polymer surface functionalization on industrial scale. For biomaterial applications, the density and selectivity of the functionalization are of particular importance, because functional groups control the immobilization of biomolecules. Therefore, surface modification of biomaterials is a challenging task for low-pressure plasma technique. Plasma processes have been successfully applied to various polymer types in order to generate multifunctional surfaces. This paper discusses the present state and the prospects of non-coating plasma processes to generate mono functional surfaces of controlled amino group density. Such surfaces appear most desirable for many applications. The results of various microwave- and radio-frequency- excited plasma processes reported in the literature are reviewed and compared to a sequence of experiments that was conducted in a UHV reaction environment. Non-thermal plasmas are especially well suited for thermally damageable polymers. The effect of hydrogen admixture to discharges in nitrogen and ammonia is discussed in detail. The optimization of process parameters lead to highly selective amino functionalization of high density. The selectivity reached 100% -NH2/N at a surface density of amino groups of 3% -NH2/C. KW - Low pressure plasma KW - Grafting KW - Polymers KW - Amino group KW - Surface analysis PY - 2003 DO - https://doi.org/10.1016/S0042-207X(02)00766-2 SN - 0042-207X VL - 71 IS - 3 SP - 391 EP - 406 PB - Elsevier Science CY - Kidlington AN - OPUS4-13686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -