TY - JOUR A1 - Adwani, D. A1 - Pipintakos, G. A1 - Mirwald, J. A1 - Wang, Y. A1 - Hajj, R. A1 - Guo, M. A1 - Liang, M. A1 - Jing, R. A1 - Varveri, A. A1 - Zhang, Y. A1 - Pei, K. A1 - Xu, X. A1 - Leng, Z. A1 - Li, D. A1 - Villamil, W. A1 - Caro, S. A1 - Chailleux, E. A1 - Cantot, J. A1 - Weigel, Sandra A1 - Škulteckė, J. A1 - Tarsi, G. A1 - Margaritis, A. A1 - Wang, H. A1 - Hu, Y. A1 - Airey, G. A1 - Sreeram, A. A1 - Bhasin, A. T1 - Examining the efficacy of promising antioxidants to mitigate asphalt binder oxidation: Insights from a worldwide interlaboratory investigation N2 - Oxidative aging induces significant stiffening of asphalt binders that leads to a pronounced reduction in the overall durability of asphalt pavements. The strategic implementation of antioxidant additives provides a potential solution to alleviate this issue. This work presents results from the second phase of the global consortium for antioxidants research aimed at investigating the effectiveness of potential antioxidants in increasing the durability of asphalt binders. Sixteen laboratories around the world participated in this effort and a total of 28 binders from diverse geographical regions were tested. Two promising antioxidants, namely zinc diethyldithiocarbamate (ZDC) and kraft lignin were evaluated in this phase and blended with the binders at specific proportions. Subsequently, a comprehensive investigation was conducted to assess rheological characteristics and chemical properties of the various blends, utilising Dynamic Shear Rheometer (DSR) measurements and Fourier Transform Infrared (FTIR) Spectroscopy. The findings indicate that additives such as ZDC hold considerable promise as an effective antioxidant, particularly when considering a wide diversity of binders. In general, its incorporation does not compromise the rutting performance of the binders and significantly improves fatigue performance. Therefore, research efforts should be focused on exploring additional facets to assess its practical applicability in field. KW - Asphalt oxidation KW - Binder aging KW - Antioxidant additives KW - Binder rheology KW - Binder chemistry KW - Bitumen und bitumenhaltige Bindemittel KW - FTIR-Spektroskopie KW - Anwendungsmöglichkeiten KW - Vergleichsuntersuchung KW - Arbeitsanleitung KW - Präzision PY - 2024 DO - https://doi.org/10.1080/10298436.2024.2332363 SN - 1477-268X VL - 25 IS - 1 SP - 1 EP - 15 PB - Taylor & Francis CY - London AN - OPUS4-59957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernandes, C. A1 - Santos, I.C. A1 - Santos, I. A1 - Pietzsch, H.J. A1 - Kunstler, J.-U. A1 - Kraus, Werner A1 - Rey, A. A1 - Margaritis, N. A1 - Bourkoula, A. A1 - Chiotellis, A. A1 - Paravatou-Petsotas, M. A1 - Pirmettis, I. T1 - Rhenium and technetium complexes bearing quinazoline derivatives: progress towards a 99mTc biomarker for EGFR-TK imaging N2 - The quinazoline derivatives (3-chloro-4-fluorophenyl)quinazoline-4,6-diamine (2) and (3-bromophenyl)quinazoline-4,6-diamine (3) were labelled with 99mTc using the 4 + 1 mixed-ligand system [Tc(NS3)(CN-R)] and the tricarbonyl moiety fac-[Tc(CO)3]+. In the 4 + 1 approach the technetium(III) is stabilized by a monodentate isocyanide bearing a quinazoline fragment (L1, L2) and by the tetradentate tripodal ligand tris(2-mercaptoethyl)-amine (NS3). In the 4 + 1 approach, 99mTc-labelling was performed in a two-step procedure, the complexes [Tc(NS3)(L1)] (7a) and [Tc(NS3)(L2)] (8a) being obtained in about 50–70% yield. In the tricarbonyl approach, the fac-[Tc(CO)3]+ unit is anchored by two different monoanionic chelators bearing the quinazoline derivatives (3-chloro-4-fluorophenyl)quinazoline-4,6-diamine (2) and (3-bromophenyl)quinazoline-4,6-diamine (3). Both chelators have a N2O donor atom set, but one contains a pyrazolyl ring (L5H) and the other contains a pyridine unit (L6H). In both cases the conjugation of the quinazoline to the chelator was done through the secondary amine of the potentially tridentate and monoanionic chelators, the corresponding 99mTc-complexes (10a, 11a) being obtained in quantitative yield. The identities of the 99mTc-labelled quinazolines (7a, 8a, 10a, 11a) were confirmed by comparison with the HPLC profiles of the analogous Re compounds (7, 8, 10, 11). All these Re complexes were characterized by NMR and IR spectroscopy, elemental analysis and in some cases by MS and X-ray diffraction analysis. In vitro studies indicate that the quinazoline fragments, after conjugation to the cyano group (L1, L2) or to the pyrazolyl containing chelator (L5H), as well as the corresponding Re complexes (7, 8, 10) inhibit significantly the EGFR autophosphorylation and also inhibit A431 cell growth. These two effects were also found for the pyridine-containing chelator (L6H) and corresponding Re complex (11), although to a lesser extent. PY - 2008 DO - https://doi.org/10.1039/b802021c SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 SP - 3215 EP - 3225 PB - RSC CY - Cambridge AN - OPUS4-17754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -