TY - JOUR A1 - Steglich, Patrick A1 - Paul, Martin A1 - Mai, C. A1 - Böhme, A. A1 - Bondarenko, S. A1 - Weller, Michael G. A1 - Mai, A. T1 - A monolithically integrated microfluidic channel in a silicon-based photonic-integrated-circuit technology for biochemical sensing N2 - In this work, a cost-effective optofluidic system is proposed and preliminary experimental results are presented. A microfluidic channel monolithically integrated into a photonic integrated circuit technology is used in conjunction with a cyclic olefin copolymer (COC) substrate to provide fluidic in- and output ports. We report on initial experimental results as well as on the simple and cost-effective fabrication of this optofluidic system by means of micro-milling. KW - Biosensors KW - Biophotonics KW - Optical sensors KW - Photonic sensors KW - Ring resonators KW - Silicon photonics KW - Lab-on-a-chip KW - Microfluidics KW - Chip KW - Biochip PY - 2021 DO - https://doi.org/10.1117/12.2588791 VL - 11772 SP - 1 EP - 5 PB - SPIE AN - OPUS4-53559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517139 DO - https://doi.org/10.1109/LPT.2020.3019114 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Rabus, D. G. A1 - Sada, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, C. A1 - Mai, A. T1 - Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial N2 - Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial,we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing. KW - Biosensors KW - Biophotonics KW - Chemosensor KW - Biosensor KW - Microresonator KW - Nanophotonics KW - Optical sensors KW - Photonic sensors KW - Optoelectronic KW - Ring resonator KW - Silicon photonics KW - Miniaturization KW - Lab-on-a-chip KW - Lab-on-chip KW - Waveguide KW - Surface chemistry KW - Silanization KW - Glutaraldehyde KW - Affinity immobilization KW - Antibody KW - Oriented immobilization KW - Real-time measurement PY - 2022 DO - https://doi.org/10.1109/JSEN.2021.3119547 SN - 1530-437X VL - 22 IS - 11 SP - 10089 EP - 10105 PB - IEEE AN - OPUS4-55147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steglich, P. A1 - Mai, C. A1 - Bondarenko, S. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Schrader, S. A1 - Mai, A. T1 - BioPIC - Integration of Biosensors based on Photonic Integrated Circuits by Local-Backside Etching N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. T2 - ATTRACT online Conference CY - Online meeting DA - 22.09.2020 KW - Silicon Photonics KW - Photonic Sensor KW - Photonic Integrated Circuits KW - Point-Of-Care-Diagnostics KW - CMOS KW - Microfluidics KW - Lab-on-a-chip KW - Ring resonator PY - 2020 UR - https://attract-eu.com/showroom/project/integration-of-biosensors-based-on-photonic-integrated-circuits-by-local-backside-etching-biopic/ SP - 1 EP - 5 AN - OPUS4-51735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Steglich, P. A1 - Rabus, D. G. A1 - Sada, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, C. A1 - Mai, A. T1 - Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial N2 - Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial, we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing. KW - Lab on a chip KW - Biosensor KW - Cmos KW - Silanization KW - Surface derivatization KW - Evanescent wave PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529360 DO - https://doi.org/10.36227/techrxiv.14909901.v1 SP - 1 EP - 18 PB - IEEE CY - Piscataway Township AN - OPUS4-52936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller-Mai, C.M. A1 - Berger, Georg A1 - Stiller, M. A1 - Gildenhaar, Renate A1 - Jörn, Daniela A1 - Ploska, Ute A1 - Houshmand, A. A1 - Bednarek, A. A1 - Koch, C. A1 - Knabe, C. T1 - Evaluation of degradable bone cements for percutaneous augmentation of bone defects KW - Bone defect KW - Bioactive bone cement KW - Calcium alkali orthophosphates KW - Histology KW - Histomorphometry KW - Knochendefekt KW - Bioaktiver Knochenzement KW - Calciumalkaliorthophosphat KW - Histologie KW - Histomorphometrie PY - 2010 DO - https://doi.org/10.1002/mawe.201000706 SN - 0933-5137 SN - 1521-4052 VL - 41 IS - 12 SP - 1040 EP - 1047 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel A1 - Saal, L. A1 - Zietzschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Ruhl, A. S. A1 - Jekel, M. A1 - Braun, U. T1 - Aktivkohlecharakterisierung als weiterer Schlüssel für Adsorptionsprognosen organischer Spurenstoffe in der vierten Reinigungsstufe N2 - In diesem Beitrag wird der Einfluss des Aktivkohleprodukts auf die Adsorption von Spurenstoffen aus Kläranlagenablauf gezeigt und diskutiert. Im zweiten Teil wird das Material Aktivkohle analytisch charakterisiert und die Eigenschaften systematisiert. Die gewonnenen Erkenntnisse werden mit Bezug zu Praxislösungen zusammengefasst. T2 - Wasser 2021 CY - Online meeting DA - 10.05.2021 KW - Aktivkohle KW - Thermogravimetrie KW - Zersetzungsgasanalyse KW - Proximatanalyse PY - 2021 SP - 373 EP - 378 AN - OPUS4-52740 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ihlenburg, R. B. J. A1 - Mai, T. A1 - Thünemann, Andreas A1 - Baerenwald, R. A1 - Saalwächter, K. A1 - Koetz, J. A1 - Taubert, A. T1 - Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N′,N′-tetramethyl-N,N′-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Small-angle X-ray scattering KW - SAXS KW - Gel PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society AN - OPUS4-52403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, D. A1 - Saal, L. A1 - Zietschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Schuhmann, P. A1 - Ruhl, A. A1 - Jekel, M. A1 - Braun, U. T1 - Characterization of activated carbons for water treatment using TGA‑FTIR for analysis of oxygen‑containing functional groups N2 - Water treatment with activated carbon (AC) is an established method for the removal of organic micropollutants and natu ral organic matter. However, it is not yet possible to predict the removal of individual pollutants. An appropriate material characterization, matching adsorption processes in water, might be the missing piece in the puzzle. To this end, this study examined 25 diferent commercially available ACs to evaluate their material properties. Frequently reported analyses, including N2 adsorption/desorption, CHNS(O), point of zero charge (PZC) analysis, and X-ray photoelectron spectroscopy, were conducted on a selected subset of powdered ACs. Inorganic elements examined using X-ray fuorescence and X-ray difraction spectroscopy revealed that relative elemental contents were distinctive to the individual AC’s raw material and activation procedure. This study also is the frst to use thermogravimetric analysis (TGA) coupled to Fourier-transform infrared spectroscopy (FTIR) to conduct quantitative analyses of functional surface oxygen groups (SOGs: carboxylic acid, anhydride, lactone, phenol, carbonyl, and pyrone groups) on such a large number of ACs. The comparably economical TGA method was found to provide good surrogates for the PZC by pyrolytic mass loss up to 600 ◦C (ML600), for the oxygen content by ML1000 and for the carbon content by oxidation. Mass loss profles depict the AC’s chemistry like fngerprints. Furthermore, we found that SOG contents determined by TGA-FTIR covered a wide individual range and depended on the raw material and production process of the AC. TGA and TGA-FTIR might therefore be used to identify the suitability of a particular AC for a variety of target substances in diferent target waters. This can help practitioners to control AC use in waterworks or wastewater treatment plants. KW - Adsorbtion KW - Organic contaminants KW - Temperature-programmed desorption KW - Proximate analysis KW - Principal component analysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555506 DO - https://doi.org/10.1007/s13201-022-01723-2 SN - 2190-5495 VL - 12 SP - 1 EP - 13 PB - Springer CY - Berlin AN - OPUS4-55550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -