TY - JOUR A1 - Senoner, Mathias A1 - Maaßdorf, A. A1 - Rooch, Heidemarie A1 - Österle, Werner A1 - Malcher, M. A1 - Schmidt, M. A1 - Kollmer, F. A1 - Paul, D. A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Unger, Wolfgang T1 - Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1–xAs and InxGa1–xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface-analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. KW - AES KW - BAM-L200 KW - CRM KW - EDX KW - Imaging KW - Lateral resolution KW - Sharpness KW - Standardisation KW - STXM KW - ToF-SIMS KW - XPEEM KW - XPS KW - Certified reference material KW - Imaging surface analysis PY - 2015 U6 - https://doi.org/10.1007/s00216-014-8135-7 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3211 EP - 3217 PB - Springer CY - Berlin AN - OPUS4-33033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vila-Comamala, J. A1 - Jefimovs, K. A1 - Raabe, J. A1 - Pilvi, T. A1 - Fink, R.H. A1 - Senoner, Mathias A1 - Maaßdorf, A. A1 - Ritala, M. A1 - David, C. T1 - Advanced thin film technology for ultrahigh resolution X-ray microscopy N2 - Further progress in the spatial resolution of X-ray microscopes is currently impaired by fundamental limitations in the production of X-ray diffractive lenses. Here, we demonstrate how advanced thin film technologies can be applied to boost the fabrication and characterization of ultrahigh resolution X-ray optics. Specifically, Fresnel zone plates were fabricated by combining electron-beam lithography with atomic layer deposition and focused ion beam induced deposition. They were tested in a scanning transmission X-ray microscope at 1.2 keV photon energy using line pair structures of a sample prepared by metalorganic vapor phase epitaxy. For the first time in X-ray microscopy, features below 10 nm in width were resolved. KW - X-ray microscopy KW - X-ray diffractive optics KW - Electron-beam lithography KW - Atomic layer deposition KW - BAM-L200 KW - Laterale Auflösung KW - Referenzmaterial KW - Röntgenmikroskopie KW - Zonenplatte PY - 2009 U6 - https://doi.org/10.1016/j.ultramic.2009.07.005 SN - 0304-3991 VL - 109 IS - 11 SP - 1360 EP - 1364 PB - Elsevier CY - New York, NY AN - OPUS4-19976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -