TY - GEN A1 - Kazlagic, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Data of the characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - This dataset represents the electronic supplementary material (ESM) of the publication entitled "Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study", which is published in Geostandards and Geoanalytical Research under the DOI: 10.1111/GGR.12517. It consists of four files. 'ESM_Data.xlsx' contains all reported data of the participants, a description of the applied analytical procedures, basic calculations, the consensus values, and part of the uncertainty assessment. 'ESM_Figure-S1' displays a schematic on how measurements, sequences and replicates are treated for the uncertainty calculation carried out by PTB. 'ESM_Technical-protocol.pdf' is the technical protocol of the interlaboratory comparison, which has been provided to all participants together with the samples and which contains bedside others the definition of the measurand and guidelines for data assessment and calculations. 'ESM_Reporting-template.xlsx' is the Excel template which has been submitted to all participants for reporting their results within the interlaboratory comparison. Excel files with names of the the structure 'GeoReM_Material_Sr8786_Date.xlsx' represent the Rcon(87Sr/86Sr) data for a specific reference material downloaded from GeoReM at the specified date, e.g. 'GeoReM_IAPSO_Sr8786_20221115.xlsx' contains all Rcon(87Sr/86Sr) data for the IAPSO seawater standard listed in GeoReM until 15 November 2022. KW - Reference data KW - Strontium isotope ratio KW - Interlaboratory comparison KW - Reference material KW - Cement KW - Geological material KW - Value assignment KW - Measurement uncertainty KW - Conventional method PY - 2023 UR - https://doi.org/10.5281/zenodo.7804445 DO - https://doi.org/10.5281/zenodo.7804444 PB - Zenodo CY - Geneva AN - OPUS4-57809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prohaska, T. A1 - Irrgeher, J. A1 - Benefield, J. A1 - Böhlke, J. K. A1 - Chesson, L. A. A1 - Coplen, T. B. A1 - Ding, T. A1 - Dunn, P. J. H. A1 - Gröning, M. A1 - Holden, N. E. A1 - Meijer, H. A. J. A1 - Moossen, H. A1 - Possolo, A. A1 - Takahashi, Y. A1 - Vogl, Jochen A1 - Walczyk, T. A1 - Wang, J. A1 - Wieser, M. E. A1 - Yoneda, S. A1 - Zhu, X.-K. A1 - Meija, J. T1 - Standard atomic weights of the elements 2021 (IUPAC Technical Report) N2 - Following the reviews of atomic-weight determinations and other cognate data in 2015, 2017, 2019 and 2021, the IUPAC (International Union of Pure and Applied Chemistry) Commission on Isotopic Abundances and Atomic Weights (CIAAW) reports changes of standard atomic weights. The symbol Ar(E) was selected for standard atomic weight of an element to distinguish it from the atomic weight of an element E in a specific substance P, designated Ar(E, P). The CIAAW has changed the values of the standard atomic weights of five elements based on recent determinations of terrestrial isotopic abundances: Ar (argon): from 39.948 ± 0.001 to [39.792, 39.963] Hf (hafnium): from 178.49 ± 0.02 to 178.486 ± 0.006 Ir (iridium): from 192.217 ± 0.003 to 192.217 ± 0.002 Pb (lead): from 207.2 ± 0.1 to [206.14, 207.94] Yb (ytterbium): from 173.054 ± 0.005 to 173.045 ± 0.010 The standard atomic weight of argon and lead have changed to an interval to reflect that the natural variation in isotopic composition exceeds the measurement uncertainty of Ar(Ar) and Ar(Pb) in a specific substance. The standard atomic weights and/or the uncertainties of fourteen elements have been changed based on the Atomic Mass Evaluations 2016 and 2020 accomplished under the auspices of the International Union of Pure and Applied Physics (IUPAP). Ar of Ho, Tb, Tm and Y were changed in 2017 and again updated in 2021: Al (aluminium), 2017: from 26.981 5385 ± 0.000 0007 to 26.981 5384 ± 0.000 0003 Au (gold), 2017: from 196.966 569 ± 0.000 005 to 196.966 570 ± 0.000 004 Co (cobalt), 2017: from 58.933 194 ± 0.000 004 to 58.933 194 ± 0.000 003 F (fluorine), 2021: from 18.998 403 163 ± 0.000 000 006 to 18.998 403 162 ± 0.000 000 005 (Ho (holmium), 2017: from 164.930 33 ± 0.000 02 to 164.930 328 ± 0.000 007) Ho (holmium), 2021: from 164.930 328 ± 0.000 007 to 164.930 329 ± 0.000 005 Mn (manganese), 2017: from 54.938 044 ± 0.000 003 to 54.938 043 ± 0.000 002 Nb (niobium), 2017: from 92.906 37 ± 0.000 02 to 92.906 37 ± 0.000 01 Pa (protactinium), 2017: from 231.035 88 ± 0.000 02 to 231.035 88 ± 0.000 01 Pr (praseodymium), 2017: from 140.907 66 ± 0.000 02 to 140.907 66 ± 0.000 01 Rh (rhodium), 2017: from 102.905 50 ± 0.000 02 to 102.905 49 ± 0.000 02 Sc (scandium), 2021: from 44.955 908 ± 0.000 005 to 44.955 907 ± 0.000 004 (Tb (terbium), 2017: from 158.925 35 ± 0.000 02 to 158.925 354 ± 0.000 008) Tb (terbium), 2021: from 158.925 354 ± 0.000 008 to 158.925 354 ± 0.000 007 (Tm (thulium), 2017: from 168.934 22 ± 0.000 02 to 168.934 218 ± 0.000 006) Tm (thulium), 2021: from 168.934 218 ± 0.000 006 to 168.934 219 ± 0.000 005 (Y (yttrium), 2017: from 88.905 84 ± 0.000 02 to 88.905 84 ± 0.000 01) Y (yttrium), 2021: from 88.905 84 ± 0.000 01 to 88.905 838 ± 0.000 002 KW - Argon KW - Ciaaw.org KW - Hafnium KW - Iridium KW - Lead KW - LSVEC KW - Ytterbium PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548443 DO - https://doi.org/10.1515/pac-2019-0603 SN - 0033-4545 VL - 94 IS - 5 SP - 573 EP - 600 PB - De Gruyter Verlag CY - Berlin AN - OPUS4-54844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -