TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Luo, C. A1 - Taylor, J. A1 - Thakur, S. A1 - Radu, F. A1 - Weschke, E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Xiao, B. A1 - Savan, A. A1 - Yusenko, Kirill A1 - Ludwig, A. T1 - Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale N2 - The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range. KW - Magnetism KW - High-entropy alloys KW - Reverse Monte Carlo (RMC) KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS), KW - X-ray magnetic circular dichroism (XMCD), PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578254 DO - https://doi.org/10.1007/s12274-022-5135-3 SN - 1998-0124 SP - 5626 PB - Springer AN - OPUS4-57825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Ritter, D. A1 - Goeritzer, M. A1 - Thiele, A. A1 - Blumrich, A. A1 - Beyhoff, N. A1 - Luettges, K. A1 - Smeir, E. A1 - Kasch, J. A1 - Grune, J. A1 - Müller, O. A1 - Klopfleisch, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Liver X Receptor Agonist AZ876 Induces Beneficial Endogenous Cardiac Lipid Reprogramming and Protects Against Isoproterenol-Induced Cardiac Damage N2 - Background - It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega‐3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results - Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective β‐agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol‐induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography‐high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions - The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol‐induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction. KW - Heart failure KW - Lipids KW - Liver X receptor KW - Diastolic dysfunction KW - Nuclear receptor PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529352 DO - https://doi.org/10.1161/JAHA.120.019473 VL - 10 IS - 14 SP - e019473 AN - OPUS4-52935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smeir, E. A1 - Leberer, S. A1 - Blumrich, A. A1 - Vogler, G. A1 - Vasiliades, A. A1 - Dresen, S. A1 - Jaeger, Carsten A1 - Gloaguen, Y. A1 - Klose, C. A1 - Beule, D. A1 - Schulze, P. A1 - Bodmer, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Depletion of Cardiac Cardiolipin Synthase Alters Systolic and Diastolic Function N2 - Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes ist biosynthesis and a CL-remodeling process. Here we studied the impact of CL-biosynthesis and the enzyme Cardiolipin Synthase (CLS) on cardiac function. CLS and cardiac CL-species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL-species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.zeige mehrzeige weniger KW - High-resolution mass spectrometry KW - Nontarget analysis KW - Heart failure KW - Cardiolipins KW - Lipidomics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536833 DO - https://doi.org/10.1016/j.isci.2021.103314 VL - 24 IS - 11 SP - 103314 PB - Cell Press AN - OPUS4-53683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Möckel, J. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Sack, I. A1 - Mangarova, D. B. A1 - Kader, A. A1 - Taupitz, M. A1 - Adams, L. C. A1 - Keller, S. A1 - Ludwig, A. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging N2 - Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls’ Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis. KW - Magnetic resonance imaging KW - MRI KW - Imaging KW - Human serum albumin KW - Extracellular matrix KW - Macrophages KW - Contrast agent KW - Atherosclerotic plaques KW - Gadofosveset KW - Aneurysm PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536725 DO - https://doi.org/10.3390/biology10100964 VL - 10 IS - 10 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Eis, A. A1 - Ortlepp, S. A1 - Ludwig, H.-M. A1 - Schnell, A. A1 - Rübner, Katrin ED - Jäger, W. T1 - RC-Leichtgranulate - Leichte Gesteinskörnungen aus ziegelhaltigem Mauerwerkbruch N2 - Bericht über ein laufendes Forschungsvorhaben zur Entwicklung eines Verfahrens zur Herstellung von leichten Gesteinskörnungen für die Produktion von Leichtbeton und -mörtel aus ziegelhaltigen Bau- und Abbruchabfällen durch thermische Porosierung. KW - Leichte Gesteinskörnung KW - Bau- und Abbruchabfälle KW - Leichtbeton KW - Leichtmörtel PY - 2016 SN - 978-3-433-03131-5 VL - 41 SP - 551 EP - 554 PB - Ernst & Sohn GmbH & Co. KG CY - Berlin AN - OPUS4-39198 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blumrich, A. A1 - Vogler, G. A1 - Dresen, S. A1 - Diop, S. B. A1 - Jaeger, Carsten A1 - Leberer, S. A1 - Grune, J. A1 - Wirth, E. K. A1 - Hoeft, B. A1 - Renko, K. A1 - Foryst-Ludwig, A. A1 - Spranger, J. A1 - Sigrist, S. A1 - Bodmer, R. A1 - Kintscher, U. T1 - Fat-body brummer lipase determines survival and cardiac function during starvation in Drosophila melanogaster N2 - The cross talk between adipose tissue and the heart has an increasing importance for cardiac function under physiological and pathological conditions. This study characterizes the role of fat body lipolysis for cardiac function in Drosophila melanogaster. Perturbation of the function of the key lipolytic enzyme, brummer (bmm), an ortholog of themammalian ATGL (adipose triglyceride lipase) exclusively in the fly’s fat body, protected the heart against starvation-induced dysfunction. We further provide evidence that this protection is caused by the preservation of glycerolipid stores, resulting in a starvation-resistant maintenance of energy supply and adequate cardiac ATP synthesis. Finally, we suggest that alterations of lipolysis are tightly coupled to lipogenic processes, participating in the preservation of Lipid energy substrates during starvation. Thus, we identified the inhibition of adipose tissue lipolysis and subsequent energy preservation as a protective mechanism against cardiac dysfunction during catabolic stress. KW - High-resolution mass spectrometry KW - Nontarget analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528756 DO - https://doi.org/10.1016/j.isci.2021.102288 VL - 24 IS - 4 SP - 102288 AN - OPUS4-52875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhatia, S. A1 - Donskyi, Ievgen A1 - Block, S. A1 - Nie, C. A1 - Burdinski, A. A1 - Lauster, D. A1 - Radnik, Jörg A1 - Herrmann, A. A1 - Haag, R. A1 - Ludwig, K. A1 - Adeli, M. T1 - Wrapping and Blocking of Influenza A Viruses by Sialylated 2D Nanoplatforms N2 - Inhibition of respiratory viruses is one of the most urgent topics as underlined by different pandemics in the last two decades. This impels the development of new materials for binding and incapacitation of the viruses. In this work, we have demonstrated that an optimal deployment of influenza A virus (IAV) targeting ligand sialic acid (SA) on a flexible 2D platform enables its binding and wrapping around IAV particles. A series of 2D sialylated platforms consisting graphene and polyglycerol are prepared with different degrees of SA functionalization around 10%, 30%, and 90% named as G-PG-SAL, G-PG-SAM, and G-PG-SAH, respectively. The cryo-electron tomography (Cryo-ET) analysis has proved wrapping of IAV particles by G-PG-SAM. A confocal-based colocalization assay established for these materials has offered the comparison of binding potential of sialylated and non-sialylated nanoplatforms for IAV. With this method, we have estimated the binding potential of the G-PG-SAM and G-PG-SAH sheets for IAV particles around 50 and 20 times higher than the control sheets, respectively, whereas the low functionalized G-PG-SAL have not shown any significant colocalization value. Moreover, optimized G-PG-SAM exhibits high potency to block IAV from binding with the MDCK cells. KW - 2D Materials KW - Graphhene KW - Influenza A virus KW - Sialic acid KW - wrapping PY - 2021 DO - https://doi.org/10.1002/admi.202100285 VL - 8 IS - 12 SP - 285 PB - Wiley VCH AN - OPUS4-52715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schnell, A. A1 - Müller, A. A1 - Rübner, Katrin A1 - Ludwig, H.-M. ED - Thomé-Kozmiensky, K.J. ED - Goldmann, D. T1 - Mineralische Bauabfälle als Rohstoff für die Herstellung leichter Gesteinskörnungen N2 - enden Mengen und die erreichten Recyclingquoten sind in den seit 1996 erscheinenden Monitoringberichten der Arbeitsgemeinschaft Kreislaufwirtschaftsträger Bau dargestellt. In dem 2011 erschienen Bericht wird ausgewiesen, dass im Jahr 2008 58,2 Millionen Tonnen Bauschutt bestehend aus Beton- und Mauerwerkabbruch anfielen. Die Recyclingquoten bewegen sich um die 70 Prozent. Das in stationären oder mobilen Anlagen aufbereitete Material wird hauptsächlich im Tief- und Landschaftsbau eingesetzt. Ein Einsatz im Hochbau erfolgt nur durch einzelne Unternehmen. Hierbei werden hauptsächlich rezyklierte grobe Gesteinskörnungen für Normalbeton aus Betonbruch gewonnen. Heterogener Mauerwerkbruch, der Wandbaustoffe, Mörtel, Putz, Fliesen und weitere Bestandteile enthält, oder die bei der Aufbereitung zwangsläufig entstehenden Feinfraktionen finden bisher keine Verwendung. KW - Bauschutt KW - Bauabfälle KW - Leichte Gesteinskörnung KW - Stoffliches Recycling KW - Granulate PY - 2012 SN - 978-3-935317-81-8 VL - 5 SP - 469 EP - 494 PB - TK-Verl. CY - Neuruppin AN - OPUS4-25709 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, L. A1 - von der Au, Marcus A1 - Zimmermann, T. A1 - Reese, A. A1 - Ludwig, J. A1 - Pröfrock, D. T1 - A metrologically traceable protocol for the quantification of trace metals in different types of microplastic N2 - The presence of microplastic (MP) particles in aquatic environments raised concern About possible enrichment of organic and inorganic pollutants due to their specific surface and chemical properties. In particular the role of metals within this context is still poorly understood. Therefore, the aim of this work was to develop a fully validated acid digestion protocol for metal analysis in different polymers, which is a prerequisite to study such interactions. The proposed digestion protocol was validated using six different certified reference materials in the microplastic size range consisting of polyethylene, polypropylene, acrylonitrile butadiene styrene and polyvinyl chloride. As ICP-MS/MS enabled time-efficient, sensitive and robust analysis of 56 metals in one measurement, the method was suitable to provide mass fractions for a multitude of other elements beside the certified ones (As, Cd, Cr, Hg, Pb, Sb, Sn and Zn). Three different microwaves, different acid mixtures as well as different temperatures in combination with different hold times were tested for optimization purposes. With the exception of Cr in acrylonitrile butadiene styrene, recovery rates obtained using the optimized protocol for all six certified reference materials fell within a range from 95.9% ± 2.7% to 112% ± 7%. Subsequent optimization further enhanced both precision and recoveries ranging from 103% ± 5% to 107 ± 4% (U; k = 2 (n = 3)) for all certified metals (incl. Cr) in acrylonitrile butadiene styrene. The results clearly show the analytical challenges that come along with metal analysis in chemically resistant plastics. Addressing specific analysis Tools for different sorption scenarios and processes as well as the underlying kinetics was beyond this study’s scope. However, the future application of the two recommended thoroughly validated total acid digestion protocols as a first step in the direction of harmonization of metal analysis in/on MP will enhance the significance and comparability of the generated data. It will contribute to a better understanding of the role of MP as vector for trace metals in the environment. KW - Microplatic KW - Digestion KW - Analytical Chemistry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510727 DO - https://doi.org/10.1371/journal.pone.0236120 VL - 15 IS - 7 SP - e0236120 AN - OPUS4-51072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dombrowski, M. A1 - Hückler, A. A1 - Stelzner, Ludwig A1 - Häßler, Dustin A1 - Heidemann, L. A1 - Reinhold, S. A1 - Zeitler, B. A1 - Früke, J. A1 - Lenz, T. A1 - Theuerkauf, H. A1 - Söll, S. A1 - Reyher, B. A1 - Schlaich, M. T1 - Innovative lightweight floors made of prestressed CFRP-reinforced concrete – from research to construction practice N2 - The presented joint research project “CaPreFloor”, which started in 2023, aims to employ prestressed textile-reinforced concrete using carbonfibre-reinforced polymer (CFRP) to design lightweight floor elements. This allows the reduction of common steel-reinforced concrete floors of 30 cm thickness to a maximum of 6 cm for office, residential, and hotel buildings. Lower material consumption significantly contributes to the conservation of resources and minimises the carbon footprint. In addition, the prefabrication of these floor elements results in high and consistent quality, short construction times and enhanced reusability of the components. A team of experts from various research and practice fields works on this project to achieve the set goal. Currently, open questions include the anchorage and load transfer of the prestressed CFRP reinforcement, structural failure indication, the behaviour of CFRP reinforcement and high-performance concrete at elevated temperatures, as well as fire resistance and sound insulation. As a result, an extensive test programme on different size scales will be conducted. Practical aspects, such as design, field of application and life cycle, as well as the development of an automated production plant, are also considered. The paper will present considerations related to the geometry and design, material selection, manufacturing, ecological footprint, and intended experimental test programme. Four different geometries and two different CFRP reinforcements are being examined. As a result, the developed floor must fulfil all practical requirements in building construction. T2 - XI International Symposium on Fiber Reinforced Concrete (Befib 2024) CY - Dresden, Germany DA - 15.09.2024 KW - Lightweight floor system KW - Prestressed CFRP concrete KW - Fire resistance KW - Sound insulation PY - 2024 SP - 246 EP - 256 AN - OPUS4-62431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -