TY - JOUR A1 - Laux, P. A1 - Tentschert, J. A1 - Riebeling, Ch. A1 - Braeuning, A. A1 - Creutzenberg, O. A1 - Epp, A. A1 - Fessard, V. A1 - Haas, K.-H. A1 - Haase, A. A1 - Hund-Rinke, K. A1 - Jakubowski, Norbert A1 - Kearns, P. A1 - Lampen, A. A1 - Rauscher, H. A1 - Schoonjans, R. A1 - Störmer, A. A1 - Thielmann, A. A1 - Mühle, U. A1 - Luch, A. T1 - Nanomaterials: certain aspects of application, risk assessment and risk communication N2 - Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public. KW - Nanomaterials KW - Toxicity KW - Ecotoxicity KW - Standardization KW - Exposure PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441096 DO - https://doi.org/10.1007/s00204-017-2144-1 VL - 92 IS - 1 SP - 121 EP - 141 PB - Springer AN - OPUS4-44109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Lehmann, C. A1 - Kästner, Claudia A1 - Krause, B. A1 - Burel, A. A1 - Chevance, S. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Bräuning, A. A1 - Laux, A. A1 - Thünemann, Andreas A1 - Loipis, I. E. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Effects of Al-, Ti- and Zn-containing nanomaterials on cell lines in vitro N2 - Among the different tested endpoints, Al- and Ticontaining nanomaterials did notshowany toxicity in intestinal cell lines in vitro. Nevertheless, this absence of effect was not due to an absence of exposure, since particle-specific uptake was reported. Metal particle uptake over a long time period might therefore be relevant for risk assessment of aluminum- and titanium-containing food products. T2 - 52nd Congress of the European-Societies-of-Toxicology (EUROTOX) CY - Seville, Spain DA - 04.09.2017 KW - Nanoparticles PY - 2017 DO - https://doi.org/10.1016/j.toxlet.2016.06.1954 SN - 0378-4274 VL - 258 SP - S272 PB - Elsevier Ltd. AN - OPUS4-40939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Meyer, T. A1 - Burel, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estreal-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Luch, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of an artificial digestion procedure on aluminum-containing nanomaterials N2 - Aluminum has gathered toxicological Attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or Food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Smallangle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the singleparticle mode were employed to characterize two aluminumcontaining nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong Agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b02729 SN - 1520-5827 SN - 0743-7463 VL - 33 IS - 40 SP - 10726 EP - 10735 PB - Americal Chemical Society AN - OPUS4-42438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447057 DO - https://doi.org/10.1039/C8RA00205C SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Braeuning, C. A1 - Kunz, B. M. A1 - Daher, H. A1 - Kästner, C. A1 - Krause, B.-C. A1 - Meyer, T. A1 - Jalili, P. A1 - Kogeveen, K. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Burel, A. A1 - Chevance, S. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells N2 - Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of Action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 mg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related. KW - Small-angle x-ray scattering KW - SAXS KW - Nanopatricle PY - 2018 DO - https://doi.org/10.1080/17435390.2018.1504999 SN - 1743-5390 VL - 12 IS - 9 SP - 992 EP - 1013 PB - Taylor & Francis AN - OPUS4-47432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Niedzwiecka, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Selve, S. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Krause, E. A1 - Lampen, A. T1 - Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects N2 - The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment. KW - Silver nanoparticles KW - Protein KW - Small-angle X-ray scattering KW - SAXS PY - 2017 DO - https://doi.org/10.1021/acs.jproteome.7b00412 SN - 1535-3893 SN - 1535-3907 VL - 16 IS - 11 SP - 4020 EP - 4034 PB - Americal Chemical Society AN - OPUS4-42688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Oberemm, A. A1 - Creutzenberg, O. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Lampen, A. T1 - Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats N2 - The presence of nano-scaled particles in food and food-related products has drawn attention to the oral uptake of nanoparticles and their interactions with biological systems. In the present study, we used a toxicoproteomics approach to allow for the untargeted experimental identification and comparative analysis of cellular Responses in rat liver after repeated-dose treatment with silver nanoparticles, ions, and the coating matrix used for particle stabilization. The proteomic analysis revealed treatment-related effects caused by exposure to silver in particulate and ionic form. Both silver species induced similar patterns of signaling and metabolic alterations. Silver-induced cellular alterations comprised, amongst others, proteins involved in metal homeostasis, oxidative stress response, and energy metabolism. However, we discovered that secondary nano-scaled structures were formed from ionic silver. Furthermore, also the coating matrix alone gave rise to the formation of nano-scaled particles. The present data confirm, complement, and extend previous knowledge on silver toxicity in rodent liver by providing a comprehensive proteomic data set. The observation of secondary particle formation from nonparticle controls underlines the difficulties in separating particle-, ion-, and matrix coating-related effects in biological systems. Awareness of this issue will support proper evaluation of nanotoxicology-related data in the future. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2018 DO - https://doi.org/10.1016/j.fct.2018.01.056 SN - 0278-6915 SN - 1873-6351 VL - 113 SP - 255 EP - 266 PB - Elsevier AN - OPUS4-44563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oberemm, A. A1 - Hansen, Ulf A1 - Böhmert, L. A1 - Meckert, C. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver N2 - Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml−1 nanosilver, 0.5 and 5 µg ml−1 AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ −1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment. KW - Nanoparticle KW - Nanosilver KW - Silver PY - 2016 DO - https://doi.org/10.1002/jat.3231 SN - 1099-1263 VL - 36 SP - 404 EP - 413 PB - Wiley CY - Chichester AN - OPUS4-35301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Ebmeyer, J. A1 - Meyer, T. A1 - Behr, A.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Juling, J. A1 - Niemann, B. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Bräuning, A. A1 - Lampen, A. T1 - It takes more than a coating to get nanoparticles through the intestinal barrier in vitro N2 - Size and shape are crucial parameters which have impact on the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in nanotoxicology additionally focuses on particle coating. To distinguish between core- and coating-related effects in nanoparticle uptake and translocation, two nanoparticles equal in size, coating and charge but different in core material were investigated. Silver and iron oxide nanoparticles coated with poly(acrylic acid) were chosen and extensively characterized by small-angle x-ray scattering, nanoparticle tracing analysis and transmission electron microscopy (TEM). Uptake and transport were studied in the intestinal Caco-2 model in a Transwell System with subsequent elemental analysis. TEM and ion beam microscopy were conducted for particle visualization. Although equal in size, charge and coating, the behavior of the two particles in Caco-2 cells was different: while the internalized amount was comparable, only iron oxide nanoparticles additionally passed the epithelium. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. Knowledge about the different roles of the particle coating and core materials in crossing biological barriers will facilitate toxicological risk assessment of nanoparticles and contribute to the optimization of pharmacokinetic properties of nano-scaled pharmaceuticals. KW - Silver KW - Nanoparticle KW - Polymer KW - Polyacrylic acid PY - 2017 DO - https://doi.org/10.1016/j.ejpb.2016.12.004 SN - 0939-6411 SN - 1873-3441 VL - 118 SP - 21 EP - 29 PB - Elsevier AN - OPUS4-41170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Meyer, T. A1 - Böhmert, L. A1 - Juling, S. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Braeuning, A. A1 - Lampen, A. T1 - Dosimetric quantification of coating-related uptake of silver nanoparticles N2 - The elucidation of mechanisms underlying the cellular uptake of nanoparticles (NPs) is an important topic in nanotoxicological research. Most studies dealing with silver NP uptake provide only qualitative data about internalization efficiency and do not consider NP-specific dosimetry. Therefore, we performed a comprehensive comparison of the cellular uptake of differently coated silver NPs of comparable size in different human intestinal Caco-2 cell-derived models to cover also the influence of the intestinal mucus barrier and uptake-specialized M-cells. We used a combination of the Transwell system, transmission electron microscopy, atomic absorption spectroscopy, and ion beam microscopy techniques. The computational in vitro sedimentation, diffusion, and dosimetry (ISDD) model was used to determine the effective dose of the particles in vitro based on their individual physicochemical characteristics. Data indicate that silver NPs with a similar size and shape show coating-dependent differences in their uptake into Caco-2 cells. The internalization of silver NPs was enhanced in uptake-specialized M-cells while the mucus did not provide a substantial barrier for NP internalization. ISDD modeling revealed a fivefold underestimation of dose–response relationships of NPs in in vitro assays. In summary, the present study provides dosimetry-adjusted quantitative data about the influence of NP coating materials in cellular uptake into human intestinal cells. Underestimation of particle effects in vitro might be prevented by using dosimetry models and by considering cell models with greater proximity to the in vivo situation, such as the M-cell model. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - Saxs PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b01851 SN - 0743-7463 VL - 33 IS - 45 SP - 13087 EP - 13097 PB - Americal Chemical Society AN - OPUS4-42875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Meyer, Th. A1 - Sieg, H. A1 - Thünemann, Andreas A1 - Loipis, I. E. A1 - Bäuning, A. A1 - Lampen, A. T1 - Core or coating material? What dictates the uptake and translocation of nanoparticles in vitro? N2 - A core-dependent effect on nanoparticle translocation was revealed. Both the uptake and transport of nanoparticles in and through cells should be considered when discussing nanoparticle fate and safety. T2 - 52nd Congress of the European-Societies-of-Toxicology (EUROTOX) CY - Seville, Spain DA - 04.09.2016 KW - Small-angle X-ray scattering KW - SAXS KW - Silver KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1016/j.toxlet.2016.06.1940 SN - 0378-4274 SN - 1879-3169 VL - 258 SP - S267 EP - S268 PB - Elsevier Ltd. AN - OPUS4-40935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lichtenstein, D. A1 - Meyer, Th. A1 - Böhmert, L. A1 - Sieg, H. A1 - Juling, S. A1 - Thünemann, Andreas A1 - Lopies, I. E. A1 - Bräuning, A. A1 - Lampen, A. T1 - Evidence for particle-specific and coating-related uptake of silver nanoparticles N2 - Present data indicate that the quantification of silver nanoparticle internalization revealed a clear particle-specific and coatingrelated uptake. Furthermore, a high amount of silver nanoparticles is taken up in cell models of higher complexity. Thus, an underestimation of particle effects in vitro might be prevented by considering cell models with greater proximity to the in vivo situation. T2 - 52nd Congress of the European-Societies-of-Toxicology (EUROTOX) CY - Seville, Spain DA - 04.09.2016 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Silver PY - 2017 DO - https://doi.org/10.1016/j.toxlet.2016.06.1938 SN - 0378-4274 VL - 258 SP - S267 EP - S267 PB - Elsevier Ltd. AN - OPUS4-40936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Ebmeyer, J. A1 - Knappe, Patrick A1 - Juling, S. A1 - Böhmert, L. A1 - Selve, S. A1 - Niemann, B. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells N2 - Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components – carbohydrates, proteins and fatty acids – were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results. KW - Nanoparticle KW - Nanosilver KW - Silver PY - 2015 DO - https://doi.org/10.1515/hsz-2015-0145 SN - 1431-6730 SN - 1432-0355 SN - 1437-4315 VL - 396 IS - 11 SP - 1255 EP - 1264 PB - De Gruyter CY - Berlin [u.a.] AN - OPUS4-34887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, V. A1 - Fahrenson, C. A1 - Thünemann, Andreas A1 - Donmez, M. H. A1 - Voss, L. A1 - Bohmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Sieg, H. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - Current analyses show a widespread occurrence of microplastic particles in food products and raise the question of potential risks to human health. Plastic particles are widely considered to be inert due to their low chemical reactivity and therefore supposed to pose, if at all only minor hazards. However, variable physicochemical conditions during the passage of the gastrointestinal tract gain strong importance, as they may affect particle characteristics. This study aims to analyze the impact of the gastrointestinal passage on the physicochemical particle characteristics of the five most produced and thus environmentally relevant plastic materials polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. Scanning electron microscopy (SEM) and subsequent image analysis were employed to characterize microplastic particles. Our results demonstrate a high resistance of all plastic particles to the artificial digestive juices. The present results underline that the main stages of the human gastrointestinal tract do not decompose the particles. This allows a direct correlation between the physicochemical particle characteristics before and after digestion. Special attention must be paid to the adsorption of organic compounds like proteins, mucins and lipids on plastic particles since it could lead to misinterpretations of particle sizes and shapes. KW - Artificial digestion KW - Gastrointestinal barrier KW - Microplastic KW - Oral uptake KW - Particle size PY - 2020 DO - https://doi.org/10.1016/j.fct.2019.111010 VL - 135 SP - 111010 PB - Elsevier Ltd. AN - OPUS4-49999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Voss, L. A1 - Saloga, Patrick E. J. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - Correction to "Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion" N2 - This is a corrigendum to the original article "Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion" that was published in the journal "ACS Applied Nano Materials", vol. 3 (2020), no. 1, pp. 724-733. PY - 2020 DO - https://doi.org/10.1021/acsanm.0c01054 VL - 3 IS - 5 SP - 4914 EP - 4914 PB - American Chemical Society CY - Washington, D.C., USA AN - OPUS4-50812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Saloga, Patrick E. J. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion N2 - ZnO nanoparticles are found in different food and consumer products, and their toxicological effects are still under investigation. It is therefore important to understand their behavior in the gastrointestinal tract. Here, we used an in vitro model to assess the physicochemical fate of ZnO nanoparticles during the digestive process in artificial saliva, stomach juice, and intestinal juice. Atomic absorption spectrometry and small-angle X-ray scattering were employed to investigate two ZnO nanomaterials, one intensively characterized reference material and soluble ZnCl2 in a broad range of concentrations between 25 and 1000 μg/mL in the intestinal fluid. Because food components may influence the behavior of nanomaterials in the gastrointestinal tract, starch, milk powder, and olive oil were used to mimic carbohydrates, protein, and fat, respectively. Additionally, ion release of all Zn species was assessed in cell culture media and compared to artificial intestinal juice to investigate relevance of typical cell culture conditions in ZnO nanotoxicology. ZnCl2 as well as the ZnO species were present as particles in artificial saliva but were solubilized completely in the acidic stomach juice. Interestingly, in the intestinal fluid a concentration-independent de novo formation of particles in the nanoscale range was shown. This was the case for all particles as well as for ZnCl2, regardless of the concentration used. Neither of the food components affected the behavior of any Zn species. On the contrary, all Zn species showed a Zn-concentration-dependent ion release in common cell culture medium. This questions the suitability of cell culture studies to investigate the effect of ZnO nanoparticles on intestinal cells. Our results show that Zn-containing nanoparticles reach the intestine. This underlines the importance of determining the influence of the test environment on nanoparticle fate. KW - SAXS KW - Digestion KW - Zinc oxide KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02236 VL - 3 IS - 1 SP - 724 EP - 733 AN - OPUS4-50288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhmert, L. A1 - Niemann, B. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2 N2 - Silver nanoparticles are used in a wide range of consumer products such as clothing, cosmetics, household goods, articles of daily use and pesticides. Moreover, the use of a nanoscaled silver hydrosol has been requested in the European Union for even nutritional purposes. However, despite the wide applications of silver nanoparticles, there is a lack of information concerning their impact on human health. In order to investigate the eVects of silver nanoparticles on human intestinal cells, we used the Caco-2 cell line and peptide-coated silver nanoparticles with deWned colloidal, structural and interfacial properties. The particles display core diameter of 20 and 40 nm and were coated with the small peptide L-cysteine L-lysine L-lysine. Cell viability and proliferation were measured using Promegas CellTiter-Blue® Cell Viability assay, DAPI staining and impedance measurements. Apoptosis was determined by Annexin-V/7AAD staining and FACS analysis, membrane damage with Promegas LDH assay and reactive oxygen species by dichloroXuorescein assay. Exposure of proliferating Caco-2 cells to silver nanoparticle induced decreasing adherence capacity and cytotoxicity, whereby the formation of reactive oxygen species could be the mode of action. The eVects were dependent on particle size (20, 40 nm), doses (5–100 μg/mL) and time of incubation (4–48 h). Apoptosis or membrane damage was not detected. KW - Oral uptake KW - Intestinal cells KW - Peptide-coated silver nanoparticles KW - Cytotoxicity KW - Nanotechnology KW - Small-angle X-ray scattering KW - SAXS PY - 2012 DO - https://doi.org/10.1007/s00204-012-0840-4 SN - 0340-5761 SN - 1432-0738 VL - 86 IS - 7 SP - 1107 EP - 1115 PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-26267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhmert, L. A1 - Girod, Matthias A1 - Hansen, Ulf A1 - Maul, Ronald A1 - Knappe, Patrick A1 - Niemann, B. A1 - Weidner, Steffen A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells N2 - Orally ingested nanoparticles may overcome the gastrointestinal barrier, reach the circulatory system, be distributed in the organism and cause adverse health effects. However, ingested nanoparticles have to pass through different physicochemical environments, which may alter their properties before they reach the intestinal cells. In this study, silver nanoparticles are characterised physicochemically during the course of artificial digestion to simulate the biochemical processes occurring during digestion. Their cytotoxicity on intestinal cells was investigated using the Caco-2 cell model. Using field-flow fractionation combined with dynamic light scattering and small-angle X-ray scattering, the authors found that particles only partially aggregate as a result of the digestive process. Cell viabilities were determined by means of CellTiter-Blue® assay, 4',6-diamidino-2-phenylindole-staining and real-time impedance. These measurements reveal small differences between digested and undigested particles (1–100 µg/ml or 1–69 particles/cell). The findings suggest that silver nanoparticles may indeed overcome the gastrointestinal juices in their particulate form without forming large quantities of aggregates. Consequently, the authors presume that the particles can reach the intestinal epithelial cells after ingestion with only a slight reduction in their cytotoxic potential. The study indicates that it is important to determine the impact of body fluids on the nanoparticles of interest to provide a reliable interpretation of their nano-specific cytotoxicity testing in vivo and in vitro. KW - Silver nanoparticles KW - In vitro digestion KW - Field-flow fractionation KW - Small-angle X-ray scattering KW - Dynamic light scattering KW - Caco-2 cells PY - 2014 DO - https://doi.org/10.3109/17435390.2013.815284 SN - 1743-5390 SN - 1743-5404 VL - 8 IS - 6 SP - 631 EP - 642 PB - Informa Healthcare CY - London AN - OPUS4-29926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Lampen, A. A1 - Thünemann, Andreas T1 - What happens to the silver ions? – Silver thiocyanate nanoparticle formation in an artificial digestion N2 - An artificial digestion of silver nitrate is reported. It is shown that AgSCN nanoparticles emerge from ionic silver in saliva and remain present during the entire digestion process. The particles were characterized by infrared spectroscopy and small- and wide-angle X-ray scattering (SAXS/WAXS) regarding their composition and size distribution. KW - SAXS KW - WAXS KW - Artificial digestion PY - 2018 DO - https://doi.org/10.1039/c7nr08851e SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 8 SP - 3650 EP - 3653 PB - RSC Publ. CY - Cambridge AN - OPUS4-44277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knappe, Patrick A1 - Boehmert, L. A1 - Bienert, Ralf A1 - Karmutzki, S. A1 - Niemann, B. A1 - Lampen, A. A1 - Thünemann, Andreas T1 - Processing nanoparticles with A4F-SAXS for toxicological studies: Iron oxide in cell-based assays N2 - Nanoparticles are not typically ready-to-use for in vitro cell culture assays. Prior to their use in assays, powder samples containing nanoparticles must be dispersed, de-agglomerated, fractionated by size, and characterized with respect to size and size distribution. For this purpose we report exemplarily on polyphosphate-stabilized iron oxide nanoparticles in aqueous suspension. Fractionation and online particle size analysis was performed in a time-saving procedure lasting 50 min by combining asymmetrical flow field-flow fractionation (A4F) and small-angle X-ray scattering (SAXS). Narrowly distributed nanoparticle fractions with radii of gyration (Rg) from 7 to 21 nm were obtained from polydisperse samples. The A4F-SAXS combination is introduced for the preparation of well-characterized sample fractions originating from a highly polydisperse system as typically found in engineered nanoparticles. A4F-SAXS processed particles are ready-to-use for toxicological studies. The results of preliminary tests of the effects of fractionated iron oxide nanoparticles with a Rg of 15 nm on a human colon model cell line are reported. KW - Field-flow-fractionation KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2011 DO - https://doi.org/10.1016/j.chroma.2010.11.012 SN - 0021-9673 VL - 1218 IS - 27 SP - 4160 EP - 4166 PB - Elsevier CY - Amsterdam AN - OPUS4-23951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andres, S. A1 - Hansen, Ulf A1 - Niemann, B. A1 - Palavinskas, R. A1 - Lampen, A. T1 - Determination of the isoflavone composition and estrogenic activity of commercial dietary supplements based on soy or red clover N2 - Dietary supplements high in isolated isoflavones are commercially available for human consumption primarily to alleviate menopausal symptoms in women. The isoflavone composition, quantity and importantly their estrogenic potency are poorly standardised and can vary considerably between different products. The aim of this study was to analyse the isoflavone composition of 11 dietary supplements based on soy or red clover using the HPLC/MS/MS technique. Furthermore, we investigated the transactivational potential of the supplements on the estrogen receptors (ER), ERα and ERβ, performing luciferase reporter gene assays. As expected, we found that the isoflavone composition varies between different products. The measured total isoflavone contents in various supplements were mostly comparable to those claimed by the manufacturers in their product information. However expressing the isoflavone content as isoflavone aglycone equivalents, soy-based supplements had a clearly lower quantity compared to the manufacturer information. All supplements transactivated more or less ERα and ERβ with a preference for ERβ. The transactivational efficiency exceeded partly the maximal 17β-estradiol induced ER activation. While the different soy-based supplements revealed similar transactivation potential to both ERs, red clover-based supplements differed considerably. We conclude that different commercial dietary supplements based on soy or red clover vary in their isoflavone composition and quantity. They are estrogenically active, although especially the red clover-based supplements show considerable differences in their estrogenic potential to ERα and ERβ. Thus, different isoflavone-rich products cannot be necessarily compared regarding possible biological effects. KW - estrogenic activity KW - HPLC/MS/MS technique KW - Estrogen receptor (ER) KW - nutritional supplements PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357093 DO - https://doi.org/10.1039/C5FO00308C IS - 6 SP - 2017 EP - 2025 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-35709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -