TY - JOUR A1 - Haase, A. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Graf, P. A1 - Mantion, Alexandre A1 - Draude, F. A1 - Plendl, J. A1 - Goetz, M.E. A1 - Galla, S. A1 - Masic, A. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Arlinghaus, H. F. A1 - Luch, A. T1 - Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses JF - Journal of physics / Conference series N2 - Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages. KW - Silver nanoparticles KW - Neurotoxicology KW - Protein carbonyls KW - ROS PY - 2011 DO - https://doi.org/10.1088/1742-6596/304/1/012030 SN - 1742-6588 SN - 1742-6596 VL - 304 SP - 012030-1 - 012030-14 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-24035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tentschert, J. A1 - Draude, F. A1 - Jungnickel, H. A1 - Haase, A. A1 - Mantion, Alexandre A1 - Galla, S. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment JF - Surface and interface analysis N2 - Silver nanoparticles (SNP) are among the most commercialized nanoparticles. Here, we show that peptide-coated SNP cause functional impairment of human macrophages. A dose-dependent inhibition of phagocytosis is observed after nanoparticle treatment, and pretreatment of cells with N-acetyl cysteine (NAC) can counteract the phagocytosis disturbances caused by SNP. Using the surface-sensitive mode of time-of-flight secondary ion mass spectrometry, in combination with multivariate statistical methods, we studied the composition of cell membranes in human macrophages upon exposure to SNP with and without NAC preconditioning. This method revealed characteristic changes in the lipid pattern of the cellular membrane outer leaflet in those cells challenged by SNP. Statistical analyses resulted in 19 characteristic ions, which can be used to distinguish between NAC pretreated and untreated macrophages. The present study discusses the assignments of surface cell membrane phospholipids for the identified ions and the resulting changes in the phospholipid pattern of treated cells. We conclude that the adverse effects in human macrophages caused by SNP can be partially reversed through NAC administration. Some alterations, however, remained. KW - Silver nanoparticles KW - Lipidomics KW - N-acetyl cysteine KW - Phagocytosis KW - Oxidative stress KW - Reference material PY - 2013 DO - https://doi.org/10.1002/sia.5155 SN - 0142-2421 SN - 1096-9918 VL - 45 IS - 1 SP - 483 EP - 485 PB - Wiley CY - Chichester AN - OPUS4-27586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -