TY - JOUR A1 - Graf, P. A1 - Mantion, Alexandre A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Luch, A. A1 - Taubert, A. T1 - Silicification of peptide-coated chiral nanosilver: Novel core-shell structures N2 - Nanosilver is increasingly used in optics, medicine and analytical chemistry. We recently reported on the synthesis and properties of novel peptide-coated chiral nanosilver [1] using a small hexapeptide based on the amino acids CKK. In a continuation of our previous work, we use the peptides to catalyse TEOS hydrolysis in order to form a dense silica layer shell around a single nanoparticle, preventing chemical etching, allowing their inclusion in other inorganics, and making them biocompatible. Because of mild reaction conditions, the peptide integrity is ensured, as the chiral information which is contained in the nanoparticle. Moreover, these novel core-shell structures remain well-dispersed and are biocompatible. The possibility of further processing (creation of metamaterials etc.) is also in the focus of our interest. KW - Hybrid materials KW - Nanosilver KW - Core shell PY - 2010 U6 - https://doi.org/10.1002/zaac.201009133 SN - 0044-2313 SN - 1521-3749 SN - 0372-7874 SN - 0863-1786 SN - 0863-1778 VL - 636 IS - 11 SP - 2115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-22409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -