TY - CONF A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. Lennard A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Lempp, C. A1 - Menezes, F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – impacts of variable CO2 stream compositions on transport, injection and storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: Corrosion of pipeline steel, pipeline network design and related transport costs, alteration of well bore cements, pressure development and rock integrity, geochemical reactions, and petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 AN - OPUS4-52418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon N2 - Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn. KW - Femtosecond laser KW - Silicon KW - Amorphization KW - Crystallization KW - Spectroscopic imaging ellipsometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523687 UR - https://www.mdpi.com/1996-1944/14/7/1651 DO - https://doi.org/10.3390/ma14071651 SN - 1996-1944 VL - 14 IS - 7 SP - 1651-1 EP - 1651-21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-52368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Fischer, S. A1 - Grauel, Bettina A1 - Alivisatos, A. P. A1 - Resch-Genger, Ute T1 - Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles N2 - We synthesized and characterized a set of ultrasmall hexagonal-phase NaGdF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles with core diameters of 3.7 ± 0.5 nm. In order to assess passivation effects and the influence of possible core−shell intermixing and to identify optimum particle structures for combined imaging in the visible and near-infrared (vis−NIR: 410−850 nm) and short-wave infrared (SWIR: 1520 nm), NaYF4 shells of varying thicknesses (monolayer to 10 nm) were introduced and the influence of this parameter on the upconversion and downshifting photoluminescence of these particles was studied at different excitation power densities. This included excitation power-dependent emission spectra, slope factors, quantum yields, and excited state decay kinetics. These measurements revealed enhancement factors of the upconversion quantum yield of >10 000 in the low power region and an excitation power density-independent quantum yield of the downshifted emission at 1520 nm between 0.1 and 14%. The optimized shell thickness for combined vis and SWIR imaging was identified as 5 nm. Moreover, lifetimes and quantum yields can be continuously tuned by shell thickness which can be exploited for lifetime multiplexing and encoding. The fact that we did not observe a saturation of the upconversion quantum yield or the excited state decay kinetics with increasing shell thickness is ascribed to a strong intermixing of the active core with the inert shell during the shelling procedure. This indicates the potential of spectroscopic tools to detect cation intermixing. KW - Nanoparticle KW - Upconversion KW - Quenching PY - 2018 DO - https://doi.org/10.1021/jacs.8b01458 IS - 140 SP - 4922 EP - 4928 PB - American Chemical Society AN - OPUS4-45378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kockert, M. A1 - Mitdank, R. A1 - Zykov, A. A1 - Kowarik, Stefan A1 - Fischer, F. T1 - Absolute Seebeck coefficient of thin platinum films N2 - The influence of size effects on the thermoelectric properties of thin platinum films is investigated and compared to the bulk. Structural properties, like the film thickness and the grain size, are varied. We correlate the electron mean free path with the temperature dependence of the electrical conductivity and the absolute Seebeck coefficient SPt of platinum. A measurement platform was developed as a standardized method to determine SPt and show that SPt,film is reduced compared to SPt,bulk. Boundary and surface scattering reduce the thermodiffusion and the phonon drag contribution to SPt,film by nearly the same factor. We discuss in detail on behalf of a model, which describes the temperature dependence of the absolute Seebeck coefficient, the influence of size effects of electron-phonon and phonon-phonon interaction on SPt. KW - Thin magnetic films PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499007 DO - https://doi.org/10.1063/1.5101028 SN - 0021-8979 VL - 126 SP - 105106 PB - AIP AN - OPUS4-49900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. L. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – Impacts of variable CO2 stream compositions on transport, injection and storage N2 - To set up recommendations on how to define “reasonable minimum composition thresholds” for CO2 streams to access CO2 pipeline networks, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the CCS chain. All investigations were based on a generic “CCS cluster scenario” in which CO2 streams captured from a spatial cluster of eleven emitters (seven fossil-fired power plants, two cement plants, one refinery and one steel mill) are collected in a regional pipeline network. The resulting CO2 stream (19.78 Mio t impure CO2 per year) is transported in a trunk line (onshore and offshore) and injected into five generic replicate storage structures (Buntsandstein saline aquifers) offshore. Experimental investigations and modeling of selected impacts revealed beneficial as well as adverse impacts of different impurities and their combinations. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the considered variable compositions and mass flow rates were observed. We recommend to define minimum composition thresholds for each specific CCS project through limiting i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of concentrations of critical impurities, and defining impurity combinations to be avoided. KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543004 DO - https://doi.org/10.1016/j.ijggc.2022.103589 SN - 1750-5836 VL - 114 SP - 1 EP - 14 PB - Elsevier CY - New York, NY AN - OPUS4-54300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hamann, F. A1 - Brehm, Robert A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Frank, W. A1 - Kaiser, W.A. A1 - Fischer, D. A1 - Resch-Genger, Ute A1 - Hilger, I. T1 - Controlled modulation of serum protein binding and biodistribution of asymmetric cyanine dyes by variation of the number of sulfonate groups N2 - To assess the suitability of asymmetric cyanine dyes for in vivo fluoro-optical molecular imaging, a comprehensive study on the influence of the number of negatively charged sulfonate groups governing the hydrophilicity of the DY-67x family of asymmetric cyanines was performed. Special attention was devoted to the plasma protein binding capacity and related pharmacokinetic properties. Four members of the DY-67x cyanine family composed of the same main chromophore, but substituted with a sequentially increasing number of sulfonate groups (n = 1−4; DY-675, DY-676, DY-677, DY-678, respectively), were incubated with plasma proteins dissolved in phosphate-buffered saline. Protein binding was assessed by absorption spectroscopy, gel electrophoresis, ultrafiltration, and dialysis. Distribution of dye in organs was studied by intraveneous injection of 62 nmol dye/kg body weight into mice (n = 12; up to 180 minutes postinjection) using whole-body near-infrared fluorescence imaging. Spectroscopic studies, gel electrophoresis, and dialysis demonstrated reduced protein binding with increasing number of sulfonate groups. The bovine serum albumin binding constant of the most hydrophobic dye, DY-675, is 18 times higher than that of the most hydrophilic fluorophore, DY-678. In vivo biodistribution analysis underlined a considerable influence of dye hydrophilicity on biodistribution and excretion pathways, with the more hydrophobic dyes, DY-675 and DY-676, accumulating in the liver, followed by strong fluorescence signals in bile and gut owing to accumulation in feces and comparatively hydrophilic DY-678-COOH accumulating in the bladder. Our results demonstrate the possibility of selectively controlling dye-protein interactions and, thus, biodistribution and excretion pathways via proper choice of the fluorophore's substitution pattern. This underlines the importance of structure-property relationships for fluorescent labels. Moreover, our data could provide the basis for the rationalization of future contrast agent developments. PY - 2011 DO - https://doi.org/10.2310/7290.2011.00005 SN - 1535-3508 SN - 1536-0121 VL - 10 IS - 4 SP - 258 EP - 269 PB - Decker CY - Hamilton, Ont. AN - OPUS4-24311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, J.L. A1 - Lutomski, C.A. A1 - El-Baba, T.J. A1 - Siriwardena-Mahanama, B.N. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Allen, M. J. A1 - Trimpin, S. T1 - Matrix-assisted ionization-ion mobility spectrometry-mass spectrometry: Selective analysis of a europium-PEG complex in a crude mixture N2 - The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed. KW - Matrix-assisted ionization ion mobility spectrometry mass spectrometry KW - Europium KW - Poly(ethylene glycol) KW - Size-exclusion chromatography KW - Liquid chromatography at critical conditions KW - Electrospray ionization KW - Matrix-assisted laser desorption/ionization KW - Inductively coupled plasma-mass spectrometry KW - ESI KW - MALDI KW - SEC PY - 2015 DO - https://doi.org/10.1007/s13361-015-1233-8 SN - 1044-0305 VL - 26 IS - 12 SP - 2086 EP - 2095 PB - Elsevier CY - New York, NY AN - OPUS4-35283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H A1 - Fischer, S A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J A1 - Ostertag-Henning, C A1 - Lennard Wolf, J A1 - Pumpa, M A1 - Lubenau, U A1 - Knauer, S A1 - Jaeger, P A1 - Neumann, A A1 - Svensson, K A1 - Pöllmann, H A1 - Lempp, C A1 - Menezes, F A1 - Hagemann, B T1 - Towards Defining Reasonable Minimum Composition Thresholds – Impacts of Variable CO2 Stream Compositions on Transport, Injection and Storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: • corrosion of pipeline steel, • pipeline network design and related transport costs, • alteration of well bore cements, • pressure development and rock integrity, • geochemical reactions, and • petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - The 15th Greenhouse Gas Control Technologies Conference CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 PB - Elservier AN - OPUS4-52940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -