TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Mesquida, C. A1 - Wielgosz, R. A1 - Rosso, A. A1 - de Arechavaleta, M.R. A1 - Davies, S. A1 - Wang, H. A1 - do Rego, E.C.P. A1 - Rodrigues, J.M. A1 - de Freitas Guimaraes, E. A1 - Sousa, M.V.B. A1 - Monteiro, T.M. A1 - das Neves Valente, L.A. A1 - Violante, F.G.M. A1 - Almeida, R. R. R. A1 - Quaresma, M.C.B. A1 - Nogueira, R. A1 - Windust, A. A1 - Dai, X. A1 - Li, X. A1 - Zhang, W. A1 - Li, M. A1 - Shao, M. A1 - Wei, C. A1 - Wong, S.-K. A1 - Cabillic, J. A1 - Gantois, F. A1 - Philipp, Rosemarie A1 - Pfeifer, Dietmar A1 - Hein, Sebastian A1 - Klyk-Seitz, Urszula-Anna A1 - Ishikawa, K. A1 - Castro, E. A1 - Gonzalez, N. A1 - Krylov, A. A1 - Lin, T.T. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prévoo, D. A1 - Archer, M. A1 - Visser, R. A1 - Nlhapo, N. A1 - de Vos, B. A1 - Ahn, S. A1 - Pookrod, P. A1 - Wiangnon, K. A1 - Sudsiri, N. A1 - Muaksang, K. A1 - Cherdchu, C. A1 - Gören, A.C. A1 - Bilsel, M. A1 - LeGoff, T. A1 - Bearden, D. A1 - Bedner, M. A1 - Duewer, D. A1 - Hancock, D. A1 - Lang, B. A1 - Lippa, K. A1 - Schantz, M. A1 - Sieber, j. T1 - Final report on key comparison CCQM-K55.b (aldrin): An international comparison of mass friction purity assignment of aldrin JF - Metrologia N2 - Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.b, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2010/2011. Nineteen national measurement institutes and the BIPM participated. Participants were required to assign the mass fraction of aldrin present as the main component in the comparison sample for CCQM-K55.b which consisted of technical grade aldrin obtained from the National Measurement Institute Australia that had been subject to serial recrystallization and drying prior to sub-division into the units supplied for the comparison. Aldrin was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molar mass range 300 Da to 500 Da] and low polarity (pKOW < -2) for which related structure impurities can be quantified by capillary gas phase chromatography (GC). The key comparison reference value (KCRV) for the aldrin content of the material was 950.8 mg/g with a combined standard uncertainty of 0.85 mg/g. The KCRV was assigned by combination of KCRVs assigned by consensus from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 0.3% to 0.6% using a mass balance approach and 0.5% to 1% using a qNMR method. The major analytical challenge posed by the material proved to be the detection and quantification of a significant amount of oligomeric organic material within the sample and most participants relying on a mass balance approach displayed a positive bias relative to the KCRV (overestimation of aldrin content) in excess of 10 mg/g due to not having adequate procedures in place to detect and quantify the non-volatile content–specifically the non-volatile organics content–of the comparison sample. There was in general excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content and the residual solvent content of the sample. The comparison demonstrated the utility of 1H NMR as an independent method for quantitative analysis of high purity compounds. In discussion of the participant results it was noted that while several had access to qNMR estimates for the aldrin content that were inconsistent with their mass balance determination they decided to accept the mass balance result and assumed a hidden bias in their NMR data. By contrast, laboratories that placed greater confidence in their qNMR result were able to resolve the discrepancy through additional studies that provided evidence of the presence of non-volatile organic impurity at the requisite level to bring their mass balance and qNMR estimates into agreement. PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08014 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - CCQM-K55.b Final Report October 2012 SP - 1 EP - 41 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-26831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, A. C. P. A1 - Feller, A. A1 - Agudo Jácome, Leonardo A1 - Azevedo, C. R. F. T1 - Use of synthetic Fe3O4-rich tribofilms to investigate the effect of microconstituents, temperature and atmosphere on the friction coefficient during pin-on-disc tribotest JF - Surface Topography: Metrology and Properties N2 - This work investigates the effect of the tribotesting parameters (temperature, atmosphere, and third body chemical composition) on the coefficient of friction (CoF) during pin-on-disc dry (PoD) sliding tribotests using artificial third bodies. The third body comprised nanometric Fe3O4-based binary to quaternary chemical compositions containing copper, graphite, and zirconia. These mixtures were manually or ball-milled prepared, and pin-on-disc tribotests were conducted at 23 °C and 400 °C under air or nitrogen atmospheres. Combining PoD and artificial third body to create synthetic tribofilms might be useful for testing new formulations of Cu-free friction materials. Microstructural characterisation of the tribofilms was used to study the stability of the Fe3O4, copper, and graphite nanoparticles under different testing conditions to understand their effects on the CoF. For the Fe3O4-C-ZrO2-X systems, the ball milling mixing promoted the formation of turbostratic graphite in the tribofilm, impairing the lubricating effect of the graphite under air atmosphere at 23 °C. The formation of monoclinic CuO in the tribofilms during tribotests at 400 °C under air and N2 atmospheres promoted a lubricating effect. KW - Tribology KW - Microstructure KW - Oxide KW - Transmission electron microscopy PY - 2022 DO - https://doi.org/10.1088/2051-672X/ac9d51 SN - 2051-672X VL - 10 IS - 4 SP - 044009-1 EP - 044009-18 PB - IOP Pobilishing AN - OPUS4-56467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pontes Rodrigues, A. C. A1 - Nunes Ribeiro, P. J. A1 - Österle, Werner A1 - de Farias Azevedo, C. R. T1 - Failure analysis as a tool to optimize the design of a ring on disc tribotest investigating the role of surface roughness JF - Engineering failure analysis N2 - The influence of the surface roughness of pearlitic grey cast iron discs on the formation of tribofilms and the evolution of the friction coefficient during a ring on disc tribotest with the addition of magnetite and magnetite–graphite nanopowders as interfacial media was investigated. The roughness parameters of the cast iron discs were varied by electro discharge machining (EDM) and grinding processes, producing four distinct surface roughness conditions. The evolution of the friction coefficient, however, did not reach the steady state for most of the samples and the role of the surface roughness on the friction coefficient could not be identified. Focused ion beam (FIB) microscopy on the cast iron discs was carried out to investigate the microstructure of the discs near the tribosurface. These results showed that the EDM process not only varied the surface roughness, but also changed the microstructure of the cast iron discs, promoting the incipient fusion of the cast iron surface, with the formation of ridges and casting defects (pores). As a result, a layer of rapidly solidified metal with a dendritic microstructure was formed near to the surface of the EDMed discs. KW - Ring-on disc tribotest KW - Surface roughness KW - EDM-processing KW - Rapid solification PY - 2015 DO - https://doi.org/10.1016/j.engfailanal.2015.03.011 SN - 1350-6307 SN - 1873-1961 VL - 56 SP - 131 EP - 141 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-34623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" JF - Metrologia N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Korzen, Manfred A1 - Rodrigues, J. P. C. A1 - Correia, A. M. ED - F. Wald, ED - P. Kallerová, ED - J. Chlouba, T1 - Thermal restraint effects on the fire resistance of steel and composite steel and concrete columns T2 - International Conference - Applications of structural fire engineering (Proceedings) T2 - International Conference - Applications of structural fire engineering CY - Prague, Czech Republic DA - 2009-02-19 KW - Fire resistance KW - Thermal restraint KW - Steel columns KW - Steel-concrete columns PY - 2009 SN - 978-80-01-04266-3 SP - 512 EP - 517 CY - Prague, Czech Republic AN - OPUS4-19111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Correia, A.M. A1 - Rodrigues, J.P.C. A1 - Korzen, Manfred T1 - Experimental research on the load-bearing capacity of partially encased steel columns under fire conditons JF - Journal of structural fire engineering N2 - The composite steel and concrete columns are known to have enhanced fire behaviour when compared with bare steel columns. However there are still aspects that must be clarified, as the influence of the building surrounding structure on the fire resistance of the columns. In this paper, the results of fire resistance tests on partially encased steel columns carried out with two different experimental systems are compared. In one of the experimental systems, the building surrounding structure is materialised by a steel restraining frame, and in the other is performed by the so-called substructuring method. Due to the concept of hybrid substructuring, the entire building is decomposed in two parts: one is represented by the building element under test, whereas the remaining building is simulated numerically in a computer. The main conclusion drawn from this work was that the surrounding structure has a major influence in the development of axial forces in the test columns. Moreover, it was observed that the higher the non-dimensional axial restraint ratio the lower the critical time of the columns. KW - Fire resistance KW - Thermal restraint KW - Composite steel-concrete columns KW - Substructuring method KW - Restraining frame PY - 2012 DO - https://doi.org/10.1260/2040-2317.3.1.81 SN - 2040-2317 VL - 3 IS - 1 SP - 81 EP - 94 PB - Multi-Science Publ. Co. CY - Brentwood AN - OPUS4-25632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Korzen, Manfred A1 - Rodrigues, J.P.C. A1 - Correia, A.M. ED - Kodur, V. ED - Franssen, J.-M. T1 - Composite columns made of partially encased steel sections subjected to fire T2 - 6th International conference "Structures in fire" (Proceedings) T2 - 6th International conference "Structures in fire" CY - East Lansing, Michigan, USA DA - 2010-06-02 KW - Fire resistance KW - Thermal restraint KW - Composite steel-concrete columns KW - Substructuring method KW - Restraining frame PY - 2010 SN - 978-1-60595-027-3 SP - 341 EP - 348 PB - DEStech Publications, Inc. CY - Lancaster, PA, USA AN - OPUS4-22482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, A.C.P. A1 - Österle, Werner A1 - Gradt, Thomas A1 - Azevedo, César Roberto de Farias T1 - Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite JF - Tribology International N2 - Copper, magnetite and graphite particles were mixed in order to observe their impact on the coefficient of friction (CoF) during pin-on-disc tests and on the tribofilm formation after testing. Pure magnetite powder provided a value of CoF of 0.4. Magnetite-copper mixtures tested at 400 °C revealed lower CoF values (~0.4) than those at room temperature (~0.6). Magnetite-graphite and magnetite-graphite-copper mixtures presented lower CoF values (~0.3). All systems formed a magnetite-based tribofilm and patches of metallic copper were found on the tribosurfaces of the mixtures containing copper. Carbon layers and graphite nanoinclusions were observed in the graphite mixtures. The incorporation of zirconia particles, a by-product of ball milling mixing, prevented the selective transfer of graphite and copper to the tribosurfaces of some of the samples. KW - Brake pad materials KW - Sliding friction KW - Transfer layer KW - Surface analysis KW - Model friction tests PY - 2017 DO - https://doi.org/10.1016/j.triboint.2017.02.014 SN - 0301-679X VL - 110 SP - 103 EP - 112 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-40104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -