TY - JOUR A1 - Ordavo, I. A1 - Ihle, S. A1 - Arkadiev, V. A1 - Scharf, Oliver A1 - Soltau, H. A1 - Bjeoumikhov, A. A1 - Bjeoumikhova, S. A1 - Buzanich, Günter A1 - Gubzhokov, R. A1 - Günther, A. A1 - Hartmann, R. A1 - Holl, P. A1 - Kimmel, N. A1 - Kühbacher, M. A1 - Lang, M. A1 - Langhoff, N. A1 - Liebel, A. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Schaller, G. A1 - Schopper, F. A1 - Strüder, L. A1 - Thamm, C. A1 - Wedell, R. T1 - A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements N2 - We present a new high resolution X-ray imager based on a pnCCD detector and a polycapillary optics. The properties of the pnCCD like high quantum efficiency, high energy resolution and radiation hardness are maintained, while color corrected polycapillary lenses are used to direct the fluorescence photons from every spot on a sample to a corresponding pixel on the detector. The camera is sensitive to photons from 3 to 40 keV with still 30% quantum efficiency at 20 keV. The pnCCD is operated in split frame mode allowing a high frame rate of 400 Hz with an energy resolution of 152 eV for Mn Kα (5.9 keV) at 450 kcps. In single-photon counting mode (SPC), the time, energy and position of every fluorescence photon is recorded for every frame. A dedicated software enables the visualization of the elements distribution in real time without the need of post-processing the data. A description of the key components including detector, X-ray optics and camera is given. First experiments show the capability of the camera to perform fast full-field X-Ray Fluorescence (FF-XRF) for element analysis. The imaging performance with a magnifying optics (3×) has also been successfully tested. KW - X-ray CCD camera KW - pnCCD KW - Fast X-ray imaging KW - XRF KW - Full-field X-ray fluorescence KW - Elemental analysis KW - High quantum efficiency KW - High energy resolution KW - Polycapillary optics PY - 2011 U6 - https://doi.org/10.1016/j.nima.2011.05.080 SN - 0168-9002 SN - 0167-5087 VL - 654 SP - 250 EP - 257 PB - North-Holland CY - Amsterdam AN - OPUS4-24370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf, Oliver A1 - Ihle, S. A1 - Ordavo, I. A1 - Arkadiev, V. A1 - Bjeoumikhov, A. A1 - Bjeoumikhova, S. A1 - Buzanich, Günter A1 - Gubzhokov, R. A1 - Günther, A. A1 - Hartmann, R. A1 - Kühbacher, M. A1 - Lang, M. A1 - Langhoff, N. A1 - Liebel, A. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Soltau, H. A1 - Strüder, L. A1 - Thünemann, Andreas A1 - Wedell, R. T1 - Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera N2 - For many applications there is a requirement for nondestructive analytical investigation of the elemental distribution in a sample. With the improvement of X-ray optics and spectroscopic X-ray imagers, full field X-ray fluorescence (FF-XRF) methods are feasible. A new device for high-resolution X-ray imaging, an energy and spatial resolving X-ray camera, is presented. The basic idea behind this so-called 'color X-ray camera' (CXC) is to combine an energy dispersive array detector for X-rays, in this case a pnCCD, with polycapillary optics. Imaging is achieved using multiframe recording of the energy and the point of impact of single photons. The camera was tested using a laboratory 30 µm microfocus X-ray tube and synchrotron radiation from BESSY II at the BAMline facility. These experiments demonstrate the suitability of the camera for X-ray fluorescence analytics. The camera simultaneously records 69696 spectra with an energy resolution of 152 eV for manganese Kα with a spatial resolution of 50 µm over an imaging area of 12.7 × 12.7 mm². It is sensitive to photons in the energy region between 3 and 40 keV, limited by a 50 µm beryllium window, and the sensitive thickness of 450 µm of the chip. Online preview of the sample is possible as the software updates the sums of the counts for certain energy channel ranges during the measurement and displays 2-D false-color maps as well as spectra of selected regions. The complete data cube of 264 × 264 spectra is saved for further qualitative and quantitative processing. KW - Color X-ray camera KW - X-ray fluorescence KW - pnCCD KW - Polycapillary optic KW - Synchrotron radiation PY - 2011 U6 - https://doi.org/10.1021/ac102811p SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 7 SP - 2532 EP - 2538 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nowak, S. H. A1 - Petric, M. A1 - Buchriegler, J. A1 - Bjeoumikhov, A. A1 - Bjeoumikhova, Z. A1 - von Borany, J. A1 - Munnik, F. A1 - Radtke, Martin A1 - Renno, A. D. A1 - Reinholz, Uwe A1 - Scharf, O. A1 - Tilgner, J. A1 - Wedell, R. T1 - Road to micron resolution with a color X-ray camera – polycapillary optics characterization N2 - In a color X-ray camera spatial resolution is achieved by means of a polycapillary optic conducting X-ray photons from small regions on a sample to distinct energy dispersive pixels on a CCD matrix. At present, the resolution limit of color X-ray camera systems can go down to several microns and is mainly restricted by Pixel dimensions. The recent development of an efficient subpixel resolution algorithm allows a release from pixel size, limiting the resolution only to the quality of theoptics. In this work polycapillary properties that influence the spatial resolution are systematized and assessed both theoretically and experimentally. It is demonstrated that with the current technological Level reaching one micron resolution is challenging, but possible. KW - Color X-ray camera KW - Polycapillary optics PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-404404 UR - https://arxiv.org/abs/1705.08939 SN - 2331-8422 SP - 1 EP - 11 PB - Cornell University CY - Ithaca, NY AN - OPUS4-40440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nowak, S.H. A1 - Bjeoumikhov, A. A1 - Von Borany, J. A1 - Buchriegler, J. A1 - Munnik, F. A1 - Petric, M. A1 - Renno, A.D. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Scharf, O. A1 - Strüder, L. A1 - Wedell, R. A1 - Ziegenrücker, R. T1 - Examples of XRF and PIXE imaging with few microns resolution using SLcam® a color X-ray camera N2 - We present results of recent development of the color X-ray camera, type SLcam®, allowing detection of X-ray images with few microns resolution. Such spectral resolution is achieved with the use of high-quality polycapillary optics combined with sub-pixel resolution. Imaging of Siemens star resolution test chart reveals that the resolution limit of SLcam® can go down to nearly 5µm. Several real sample examples of measurements carried out at the laboratory, synchrotron, and particle-induced X-ray emission beamlines are shown. This is the first time SLcam® is used as particle-induced X-ray emission detector. KW - X-ray KW - Color X-ray camera KW - CXC KW - Synchrotron radiation KW - BESSY KW - BAMline PY - 2015 U6 - https://doi.org/10.1002/xrs.2590 SN - 0049-8246 VL - 44 IS - 3 SP - 135 EP - 140 PB - Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-33170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nowak, S.H. A1 - Bjeoumikhov, A. A1 - Von Borany, J. A1 - Buchriegler, J. A1 - Munnik, F. A1 - Petric, M. A1 - Radtke, Martin A1 - Renno, A.D. A1 - Reinholz, Uwe A1 - Scharf, O. A1 - Wedell, R. T1 - Sub-pixel resolution with a color X-ray camera N2 - The color X-ray camera SLcam® is a full-field, single photon detector providing scanning-free, energy and spatially resolved X-ray imaging. Spatial resolution is achieved with the use of polycapillary optics guiding X-ray photons from small regions on a sample to distinct energy dispersive pixels on a charged-coupled device detector. Applying sub-pixel resolution, signals from individual capillary channels can be distinguished. Therefore, the SLcam® spatial resolution, which is normally limited to the pixel size of the charge-coupled device, can be improved to the size of individual polycapillary channels. In this work a new approach to a sub-pixel resolution algorithm comprising photon events also from the pixel centers is proposed. The details of the employed numerical method and several sub-pixel resolution examples are presented and discussed. KW - Color X-ray camera KW - Sub pixel analysis PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-334948 SN - 0267-9477 SN - 1364-5544 SP - 1890 EP - 1897 PB - Royal Society of Chemistry CY - London AN - OPUS4-33494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -