TY - JOUR A1 - Bismarck, A. A1 - Menner, A. A1 - Kumru, M.E. A1 - Sezai Sarac, A. A1 - Bistritz, Martina A1 - Schulz, Eckhard T1 - Poly(carbazole-co-acrylamide) electrocoated carbon fibers and their adhesion behaviour to an epoxy resin matrix N2 - The surface properties of original high strength and preoxidized high modulus carbon fibers were altered by electrocopolymerizing acryl amide and carbazole and therefore depositing a copolymer coating onto the fibers. Scanning electron microscopy and zeta-potential measurements confirmed the presence of a rough but dense and continuous electrocoating with a basic surface character. Therefore, lsquogoodrsquo adhesion behavior between the electrocoated carbon fibers and an epoxy resin matrix should be expected. The interfacial adhesion was measured using the single fiber pull-out and single fiber indentation test. It was shown that only lsquointermediatersquo adhesion was present between the carbon fibers and the electrocoating, but superior adhesion between the coating and epoxy resin exists. The single fiber model composites always failed at the fiber/electrocoating interface. However, as shown by using the indentation test, the interfacial adhesion between fibers and electrocoating can be significantly improved if preoxidized fibers are used as substrate for electropolymerization. A very high tensile strength for the electrocoating can be expected as derived from the single fiber pull-out tests. PY - 2002 U6 - https://doi.org/10.1023/A:1013749019958 SN - 0022-2461 SN - 1573-4803 VL - 37 IS - 3 SP - 461 EP - 471 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-6844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pommet, M. A1 - Juntaro, J. A1 - Heng, J.Y.Y. A1 - Mantalaris, A. A1 - Lee, A.F. A1 - Wilson, K. A1 - Kalinka, Gerhard A1 - Shaffer, M.S.P. A1 - Bismarck, A. T1 - Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites N2 - Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(l-lactic acid) was quantified using the single fiber pullout test. KW - Composires KW - Bacteria KW - Surface KW - Cellulose natural fibers PY - 2008 U6 - https://doi.org/10.1021/bm800169g SN - 1525-7797 VL - 9 IS - 6 SP - 1643 EP - 1651 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bismarck, A. A1 - Carreyette, S. A1 - Fontana, Q.P.V. A1 - Greenhalgh, E.S. A1 - Jacobsson, P. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Kalinka, Gerhard A1 - Kucernak, A. A1 - Shaffer, M.S. A1 - Shirshova, N. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Multifunctional epoxy resin for structural supercapacitors N2 - Polymer-based electrolytes based on commercially available epoxy resins were prepared through the addition of a liquid electrolyte, a solution of a lithium salt in an ionic liquid. The polymer monoliths were characterized using impedance spectroscopy, 3-point bending test, scanning electron microscopy (SEM) and nitrogen adsorption (BET). The balance of ionic conductivity and flexural modulus is crucially dependent on the relative proportions of epoxy resin to electrolyte. Also the effect of the liquid electrolyte on curing kinetics and processing was assessed by complex viscosity measurements and differential scanning calorimetry (DSC). Only one out of the three resins investigated exhibited a significant acceleration effect. T2 - ECCM15 - 15th European conference on composite materials CY - Venice, Italy DA - 2012-06-24 KW - Multifunctional epoxy KW - Polymer electrolyte KW - Morphology KW - Ionic liquid PY - 2012 SN - 978-88-88785-33-2 SP - 1 EP - 8(?) AN - OPUS4-28694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Safinia, L. A1 - Dantan, Nathalie A1 - Höhse, Marek A1 - Mantalaris, A. A1 - Bismarck, A. T1 - Towards a methodology for the effective surface modification of porous polymer scaffolds N2 - A novel low-pressure radio-frequency plasma treatment protocol was developed to achieve the effective through-thickness surface modification of large porous poly (d,l-lactide) (PDLLA) polymer scaffolds using air or water: ammonia plasma treatments. Polymer films were modified as controls. Scanning electron micrographs and maximum bubble point measurements demonstrated that the PDLLA foams have the high porosity, void fraction and interconnected pores required for use as tissue engineering scaffolds. The polymer surface of the virgin polymer does contain acidic functional groups but is hydrophobic. Following exposure to air or water: ammonia plasma, an increased number of polar functional groups and improved wetting behaviour, i.e. hydrophilicity, of wet surfaces was detected. The number of polar surface functional groups increased (hence the decrease in water contact angles) with increasing exposure time to plasma. The change in surface composition and wettablility of wet polymer constructs was characterised by zeta potential and contact angle measurements. The hydrophobic recovery of the treated PDLLA polymer surfaces was also studied. Storage of the treated polymer constructs in ambient air caused an appreciable hydrophobic recovery, whereas in water only partial hydrophobic recovery occurred. However, in both cases the initial surface characteristics decay as function of time. KW - Scaffold KW - Polyactic acid KW - Plasma KW - Surface modification KW - Contact angle KW - Wettability hydrophilicity PY - 2005 U6 - https://doi.org/10.1016/j.biomaterials.2005.05.078 SN - 0142-9612 VL - 26 IS - 36 SP - 7537 EP - 7547 PB - Elsevier CY - Oxford AN - OPUS4-11487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bismarck, A. A1 - Lee, A.F. A1 - Sarac, A.S. A1 - Schulz, Eckhard A1 - Wilson, K. T1 - Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate? N2 - A simple method of creating defined PMMA and poly (MMA-co-Cz) electrocoatings on carbon fibres is described. The electrodeposition of poly methylmethacrylate (PMMA) onto unsized, unmodified carbon fibres was performed by simple constant current electrolyses of methylmethacrylate (MMA) monomer in dimethylformamide (DMF) solutions and the ‘pure’ liquid monomer using sodium nitrate and lithium perchlorate as supporting electrolytes. The presence of polymeric coatings successfully attached to the carbon fibres was verified by scanning electron microscopy and photoelectron spectroscopy (XPS). Performing the electrolysis in dilute MMA in DMF solutions ([MMA] < 5 M) results in the deposition of powder-like polymer on the carbon fibre electrodes. Increasing the MMA concentration in the DMF solution results in a homogeneous PMMA coating of the carbon fibres. The degree of grafting or coating increases with increasing MMA concentration, except when pure MMA is used without solvent. The adhesive strength between the electrocoated carbon fibres and a PMMA matrix was determined using the single fibre pull-out test. It was found that the interfacial fracture behaviour of all carbon fibre/PMMA model composites is rather brittle. The adhesion strength between the unmodified carbon fibres and the PMMA matrix was equal to the cohesive strength of the polymer matrix itself. Nevertheless, the electrodeposition of thin and homogeneous PMMA coatings resulted in much improved adhesion strengths. KW - Carbon fibres KW - Coating KW - Interfacial strength KW - Fibre - matrix bond KW - Photoelectron spectroscopy (XPS) PY - 2005 U6 - https://doi.org/10.1016/j.compscitech.2005.01.006 SN - 0266-3538 VL - 65 IS - 10 SP - 1564 EP - 1573 PB - Elsevier CY - Barking AN - OPUS4-7540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juntaro, J. A1 - Pommet, M. A1 - Kalinka, Gerhard A1 - Mantalaris, A. A1 - Shaffer, M.S.P. A1 - Bismarck, A. T1 - Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers KW - Nanotubes KW - Cellulose KW - Polymer KW - Interface KW - Hierarchical Structures PY - 2008 U6 - https://doi.org/10.1002/adma.200703176 SN - 0935-9648 SN - 1521-4095 VL - 20 IS - 16 SP - 3122 EP - 3126 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-18258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greenhalgh, E.S. A1 - Ankersen, J. A1 - Asp, L. E. A1 - Bismarck, A. A1 - Fontana, Q.P.V. A1 - Houlle, M. A1 - Kalinka, Gerhard A1 - Kucernak, A. A1 - Mistry, M. A1 - Nguyen, S. A1 - Qian, H. A1 - Shaffer, M.S.P. A1 - Shirshova, N. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Mechanical and microstructural characterisation of multifunctional structural power composites N2 - Although the inherent anisotropy of polymer composites has presented daunting technical challenges, these materials now offer engineers considerable opportunities for efficient structural design. More recently, the advent of multifunctional composites which can fulfill more than one role within a system has attracted considerable interest, providing designers with exciting opportunities to innovate. Of particular interest here are structural power composites, which simultaneously carry mechanical load whilst storing/delivering electrical energy. Although the development of these composites is highly challenging, often with conflicting constituent requirements, the STORAGE consortium has had considerable success in the development of these materials for automotive applications. The focus of this paper is structural supercapacitors, the basic architecture of a single cell of which is shown in Fig. 1. This entails two carbon fibre woven lamina (electrodes) which sandwich a glass fibre woven lamina (separator), all of which is embedded within a multifunctional matrix (electrolyte). This architecture has been the focus of the research to date, leading to components such as that shown in Fig.1 having been fabricated. This paper reports on the mechanical properties and microstructures of the different reinforcement and matrix combinations for structural supercapacitors. T2 - ICCM19 - 19th International conference on composite materials CY - Montreal, Canada DA - 28.07.2013 KW - Structural electrolyte KW - Multifunctional supercapacitor KW - Fractography KW - Ionic conductivity KW - Mechanical properties PY - 2013 SP - 2228 EP - 2237 AN - OPUS4-29272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greenhalgh, E.S. A1 - Ankersen, J. A1 - Asp, L. E. A1 - Bismarck, A. A1 - Fontana, Q.P.V. A1 - Houlle, M. A1 - Kalinka, Gerhard A1 - Kucernak, A. A1 - Mistry, M. A1 - Nguyen, S. A1 - Qian, H. A1 - Shaffer, M.S.P. A1 - Shirshova, N. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Mechanical, electrical and microstructural characterisation of multifunctional structural power composites N2 - Multifunctional composites which can fulfil more than one role within a system have attracted considerable interest. This work focusses on structural supercapacitors which simultaneously carry mechanical load whilst storing/delivering electrical energy. Critical mechanical properties (in-plane shear and in-plane compression performance) of two monofunctional and four multifunctional materials were characterised, which gave an insight into the relationships between these properties, the microstructures and fracture processes. The reinforcements included baseline T300 fabric, which was then either grafted or sized with carbon nanotubes, whilst the baseline matrix was MTM57, which was blended with ionic liquid and lithium salt (two concentrations) to imbue multifunctionality. The resulting composites exhibited a high degree of matrix heterogeneity, with the ionic liquid phase preferentially forming at the fibres, resulting in poor matrix-dominated properties. However, fibre-dominated properties were not depressed. Thus, it was demonstrated that these materials can now offer weight savings over conventional monofunctional systems when under modest loading. KW - Carbon fibres KW - Functional composites KW - Mechanical properties KW - Elastic properties KW - Fractography PY - 2014 U6 - https://doi.org/10.1177/0021998314554125 SN - 0021-9983 SN - 1530-793X SP - 1 EP - 12 PB - Sage CY - London AN - OPUS4-34567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shirshova, N. A1 - Bismarck, A. A1 - Carreyette, S. A1 - Fontana, Q.P.V. A1 - Greenhalgh, E.S. A1 - Jacobsson, P. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Kalinka, Gerhard A1 - Kucernak, A.R.J. A1 - Scheers, J. A1 - Shaffer, M.S.P. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems N2 - 'Structural electrolytes' retain the desirable mechanical characteristics of structural (epoxy) resins whilst introducing sufficient ionic conductivity to operate as electrolytes in electrochemical devices. Here, a series of ionic liquid–epoxy resin composites were prepared to identify the optimum system microstructure required to achieve a high level of multifunctionality. The ionic conductivity, mechanical properties, thermal stability and morphology of the cured epoxy based structural electrolytes were studied as a function of phase composition for three fully formulated high performance structural epoxy systems. At only 30 wt% of structural resin and 70 wt% of ionic liquid based electrolyte, stiff monolithic plaques with thicknesses of 2–3 mm were obtained with a room temperature ionic conductivity of 0.8 mS cm-1 and a Young's modulus of 0.2 GPa. This promising performance can be attributed to a long characteristic length scale spinodal microstructure, suggesting routes to further optimisation in the future. KW - Epoxy KW - Ionic liquid KW - Supercapacitor PY - 2013 U6 - https://doi.org/10.1039/c3ta13163g SN - 2050-7496 SN - 2050-7488 VL - 1 IS - 48 SP - 15300 EP - 15309 PB - RSC CY - London [u.a.] AN - OPUS4-29735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qian, H. A1 - Kalinka, Gerhard A1 - Chan, K.L.A. A1 - Kazarian, S.G. A1 - Greenhalgh, E.S. A1 - Bismarck, A. A1 - Shaffer, M.S.P. T1 - Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: Methodologies for hierarchical composites N2 - The introduction of carbon nanotubes (CNTs) modifies bulk polymer properties, depending on intrinsic quality, dispersion, alignment, interfacial chemistry and mechanical properties of the nanofiller. These effects can be exploited to enhance the matrices of conventional microscale fibre-reinforced polymer composites, by using primary reinforcing fibres grafted with CNTs. This paper presents a methodology that combines atomic force microscopy, polarised Raman spectroscopy, and nanoindentation techniques, to study the distribution, alignment and orientation of CNTs in the vicinity of epoxy-embedded micrometre-scale silica fibres, as well as, the resulting local mechanical properties of the matrix. Raman maps of key features in the CNT spectra clearly show the CNT distribution and orientation, including a ‘parted’ morphology associated with long grafted CNTs. The hardness and indentation modulus of the epoxy matrix were improved locally by 28% and 24%, respectively, due to the reinforcing effects of CNTs. Moreover, a slower stress relaxation was observed in the epoxy region containing CNTs, which may be due to restricted molecular mobility of the matrix. The proposed methodology is likely to be relevant to further studies of nanocomposites and hierarchical composites. KW - Nanotubes KW - Silica fibres KW - Nano indentation KW - Mapping PY - 2011 U6 - https://doi.org/10.1039/c1nr10497g SN - 2040-3364 SN - 2040-3372 VL - 3 IS - 11 SP - 4759 EP - 4767 PB - RSC Publ. CY - Cambridge AN - OPUS4-34718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habel, Wolfgang A1 - Bismarck, A. A1 - Ajuriagojeaskoa, E. E. A1 - Springer, J. T1 - Modification et caractérisation de la surface de fibres de verre pour son insertion postérieure dans des matériaux cimentaires PY - 1999 IS - 096 SP - 1269 EP - 1294 PB - Société de Chimie Physique CY - Paris AN - OPUS4-1455 LA - fra AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wienrich, Malte A1 - Kalinka, Gerhard A1 - Greenhalgh, E.S. A1 - Carreyette, S. A1 - Bistritz, Martina A1 - Shirshova, N. A1 - Houllé, M. A1 - Asp, L. E. A1 - Bismarck, A. A1 - Fontana, Q.P.V. T1 - Impact of ionic liquid on the mechanical performance of matrix polymer for fibre reinforced materials for energy storage N2 - For the concept of using structural materials such as carbon fibre reinforced plastics as energy storage devices, new matrix polymers are required. These polymers must provide ionic conductivity as well as adequate mechanical strength. In the EU-Project StorAGE this requirements are fulfilled by adding ionic liquid to commercial polymers. The mechanical properties of these mixtures materials were characterized by using a 3-point-bending device. In addition, single fibre pull test were performed in order to get information on the interfacial shear strength. Adding of ionic liquid has an impact on the mechanical performance of the materials. A decrease of the flexural strength and modulus of less than 10% of the value of the reference materials took part. The interfacial shear strength decreased to a value of around one third compare to the reference material. T2 - ECCM15 - 15th European conference on composite materials CY - Venice, Italy DA - 2012-06-24 KW - Multifunctional epoxy resin KW - Fibre-matrix adhesion KW - Single fibre pull-out test KW - Ionic liquid PY - 2012 SN - 978-88-88785-33-2 SP - 1 EP - 4(?) AN - OPUS4-28695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bismarck, A. A1 - Carreyette, Shuijin A1 - Fontana, Quentin P. A1 - Greenhalgh, E. A1 - Jacobsson, P. A1 - Johansson, P. A1 - Kalinka, Gerhard A1 - Wienrich, Malte T1 - Multifunctional Epoxy Resin for Structural Supercapacitors T2 - European Conference on Composite Materials 15 CY - Venice, Italy DA - 2012-06-24 PY - 2012 AN - OPUS4-27466 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bismarck, A. A1 - Pfaffernoschke, M. A1 - Springer, J. A1 - Schulz, Eckhard T1 - Polystyrene-grafted Carbon Fibers: Surface Properties and Adhesion to Polystyrene N2 - It is highly desirable to improve attractive interactions between carbon fibers and unreactive thermoplastic matrices to the possible maximum. This could be achieved by a simple grafting process to create a covalently bonded interface or interlayer, which should result in cohesive interactions between the polymer-grafted fibers and the same matrix material, leading to a better adhesion strength in the obtained composite material. Here, we are describing the grafting of styrene onto unmodified and unsized carbon fibers via free-radical bulk polymerization in the presence of fibers. After grafting, the surface properties of the carbon fiber approach those of pure polystyrene which was proven by contact angle and zeta ({zeta}) potential measurements. As indicated by the water contact angle, the carbon fiber surface becomes more hydrophobic. Scanning electron microscopy (SEM) provides evidence of grafted polymer. This simple procedure results in a continuous polystyrene coating. The fiber diameter increases significantly after polymer grafting. The adhesion and fracture behavior between the original and polystyrene-grafted carbon fibers to a polystyrene (VESTYRON®) matrix was characterized using the single-fiber pull-out test. There is a considerable increase in the measurable adhesion, i.e., the interfacial shear strength IFSS, by almost 300% between the grafted fibers and polystyrene as compared to untreated original fibers. Two planes of interfacial failure could be distinguished; first in the fiber coating interface leading to lower interfacial shear strength and second in the PS-matrix-PS-coating interphase resulting in a higher interfacial shear strength. In addition to the improved adhesion, there are also clear differences in the pull-out behavior between the nongrafted and grafted fibers. After the initial debonding process corresponding to the maximal pull-out force is completed, the pull-out force is increasing again. PY - 2005 U6 - https://doi.org/10.1177/0892705705049559 SN - 0892-7057 SN - 1530-7980 VL - 18 IS - 4 SP - 307 EP - 331 PB - Sage Publ. CY - London AN - OPUS4-11599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ho, K.K.C. A1 - Lamoriniere, S. A1 - Kalinka, Gerhard A1 - Schulz, Eckhard A1 - Bismarck, A. T1 - Interfacial behavior between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride) N2 - Atmospheric-plasma fluorination was used to introduce fluorine functionalities onto the surface of carbon fibers without affecting their bulk properties. The interfacial adhesion between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride) (PVDF) was studied by means of direct wetting measurements and single fiber pullout tests. Measured contact angles of PVDF melt droplets on modified carbon fibers show that short exposure times of carbon fibers to atmospheric-plasma fluorination (corresponding to a degree of surface fluorination of F/C = 0.01 (1.1%)) leads to improved wettability of the fibers by PVDF melts. The apparent interfacial shear strength as a measure of practical adhesion, determined by the single-fiber pullout test, increases by 65% under optimal treatment conditions. The improved practical adhesion is not due to the formation of transcrystalline regions around the fibers or a change of the bulk matrix crystallinity or to an increased surface roughness; it seems to be due to the compatibilization of the interface caused of the atmospheric-plasma fluorination of the carbon fibers. KW - Carbon fibers KW - Fluorination KW - Contact angle KW - Interface KW - Adhesion KW - Surface area KW - Fiber properties PY - 2007 U6 - https://doi.org/10.1016/j.jcis.2007.04.076 SN - 0021-9797 SN - 1095-7103 VL - 313 IS - 2 SP - 476 EP - 484 PB - Elsevier CY - Orlando, Fla. AN - OPUS4-16026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ho, K.K.C. A1 - Kalinka, Gerhard A1 - Tran, M.Q. A1 - Polyakova, N.V. A1 - Bismarck, A. T1 - Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers N2 - The interaction between direct fluorinated carbon fibres and various fluoropolymers (ethylene-chlorotrifluoroethylene, poly vinylidene fluoride, fluorinated ethylene propylene copolymer and tetrafluoroethylene-perfluoro alkoxy vinyl ether copolymer) was studied by means of direct wetting measurements between fibres and the polymer melts and single fibre pull-out tests. The results of both techniques allow the adhesion behaviour between the fibres and the matrices to be predicted. The results obtained show that a low degree of surface fluorination of carbon fibres leads to an improved wettability between the fibres and fluoropolymer melts and this is an indicator for an improved thermodynamic work of adhesion. The apparent interfacial shear strength as measure of practical adhesion, determined by the single fibre pull-out test, increases with increasing degree of surface fluorine content up to a maximum, which depends on the degree of fluorination of the matrix used. The improved interaction between the fibre and the matrix is due to an enhanced compatibility at the fibre/matrix interface. KW - Adhesion KW - A. Carbon fibres KW - B. Debonding KW - B. Interfacial strength PY - 2007 U6 - https://doi.org/10.1016/j.compscitech.2007.02.012 SN - 0266-3538 VL - 67 IS - 13 SP - 2699 EP - 2706 PB - Elsevier CY - Barking AN - OPUS4-15814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, M.Q. A1 - Ho, K.K.C. A1 - Kalinka, Gerhard A1 - Shaffer, M.S.P. A1 - Bismarck, A. T1 - Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion N2 - The quality of interfacial interaction is dictated by the surface chemistry of the carbon fibres and the composition of the matrix. The composition of poly(vinylidene fluoride) (PVDF) was modified by the addition of maleic anhydride grafted PVDF. The surface properties of the various matrix formulations were characterised by contact angle and electrokinetic measurements. Carbon fibres were modified by industrial electrochemical oxidation and oxidation in nitric acid, or the use of a traditional epoxy-sizing of industrially oxidised fibres. The surface composition, morphology and wetting behaviour of the carbon fibres was characterised. The interaction between modified PVDF and the carbon fibres was studied by direct contact angle measurements between PVDF melt on single carbon fibres and by single fibre pull-out tests. The best wetting and adhesion behaviour was achieved between PVDF containing 5 ppm grafted maleic anhydride (MAH) and epoxy-sized carbon fibres. The addition of MAH-grafted PVDF to the unmodified PVDF caused the apparent interfacial shear strength to increase by 184%. The apparent interfacial shear strength of this fibre–matrix combination allowed for the utilisation of 100% of the yield tensile strength of PVDF. KW - A. Carbon fibres KW - A. Coupling agents KW - B. Interface KW - B. Adhesion KW - Wetting PY - 2008 U6 - https://doi.org/10.1016/j.compscitech.2008.02.021 SN - 0266-3538 VL - 68 IS - 7-8 SP - 1766 EP - 1776 PB - Elsevier CY - Barking AN - OPUS4-18259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shirshova, N. A1 - Bismarck, A. A1 - Carreyette, S. A1 - Greenhalgh, E.S. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Jacobsson, P. A1 - Kalinka, Gerhard A1 - Shaffer, M.S.P. A1 - Wienrich, Malte A1 - Steinke, J.H.G. T1 - Correlations between mechanical properties and ionic conduction of structural electrolytes with bicontinuous morphologies N2 - Electrolyte systems that can carry mechanical load while allowing for high levels of ionic conductivity are an important prerequisite for structural power storage devices. Introduction of structural power storage into the variety of consumer products will allow saving in weight and volume. Moreover, using a supercapacitor/battery system in hybrid electric vehicles (HEV), the supercapacitor part will extend the battery lifetime by protecting it from the high peak currents. To successfully produce structural power storage requires the development of multifunctional electrolytes where one has to simultaneously maximize mechanical properties and ionic conductivity. T2 - ICCM19 - 19th International conference on composite materials CY - Montreal, Canada DA - 28.07.2013 KW - Structural electrolyte KW - Multifunctional supercapacitor KW - Bicontinuous morphology KW - Epoxy resin KW - Ionic conductivity KW - Mechanical properties PY - 2013 SP - 72 EP - 79 AN - OPUS4-29273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lamoriniere, S. A1 - Mitchell, P. J. A1 - Ho, K. A1 - Kalinka, Gerhard A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites N2 - Poly (ether ether ketone) (PEEK) has a high continuous service temperature, excellent mechanical properties, and good solvent and abrasion resistance, which can be further improved through the addition of carbon nanotubes (CNTs). CNT-PEEK nanocomposites are promising matrices for continuous carbon fibre composites; powder processing can mitigate the high melt viscosities in these systems. In this study, model single fibre (hierarchical) composites were produced by embedding sized and desized carbon fibres in nanocomposite CNTPEEK powders followed by single fibre pull-out tests to assess interfacial characteristics. Carbon fibre-PEEK interfacial shear strength is typically 40–45 MPa. Increasing CNT loadings increased fibre-matrix interfacial shear strength linearly up to ~70 MPa at 5.0 wt%, which was attributed to the CNT-based mechanical modification of the PEEK matrix. Apparent interfacial shear strength was inversely correlated with the embedded fibre length irrespective of carbon fibre sizing or CNT loading, indicating brittle fracture of the fibre-matrix interface. Pulled out carbon fibres were still coated with the matrix, which indicated strong adhesion at the interface in all samples, likely related to a transcrystalline region. Adhesion was, however, negatively affected by the presence of epoxy sizings. Frictional shear strength was independent of embedded fibre length and CNT content for all samples. KW - Keywords: Poly(ether ether ketone) KW - Carbon fibres KW - Carbon nanotubes KW - Interfacial strength KW - Debonding PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550052 SN - 0266-3538 VL - 221 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-55005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaker, J. J. A1 - Anthony, David B. A1 - Tang, G. A1 - Shamsuddin, S.-R. A1 - Kalinka, Gerhard A1 - Wienrich, Malte A1 - Abdolvand, Amin A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Property and shape modulation of carbon fibers using lasers N2 - An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated Region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cottonbud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. KW - Composite KW - Irradiation KW - Pull-out tests KW - Pulsed laser treatment KW - Single carbon fibers PY - 2016 U6 - https://doi.org/10.1021/acsami.6b05228 SN - 1944-8244 SN - 1944-8252 VL - 8 IS - 25 SP - 16351 EP - 16358 PB - ACS Publications CY - 1155 Sixteenth Street, NW, Washington, DC 20036, USA AN - OPUS4-37699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shirshova, N. A1 - Bismarck, A. A1 - Greenhalgh, E.S. A1 - Johansson, P. A1 - Kalinka, Gerhard A1 - Marczewski, M.J. A1 - Shaffer, M.S.P. A1 - Wienrich, Malte T1 - Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes N2 - Structural electrolytes were prepared using a fully formulated commercially available high performance epoxy resin (MTM57) and an ionic liquid based electrolyte: lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). Through a systematic study, the composition of the formulations was found to have a greater effect than the curing temperature on the morphology and properties of the resulting structural electrolytes. The presence of lithium salt is essential to form a structurally homogeneous electrolyte. Bicontinuous morphologies containing continuous (coarse) epoxy networks surrounded by connected spherical epoxy nodules were obtained with different length scales upon varying the lithium salt concentration. Increasing the LiTFSI concentration improved the miscibility of MTM57 with the electrolyte and decreased the characteristic length scale of the resulting bicontinuous microstructure. The properties of the structural electrolytes correlated with the morphology, showing increased Young’s modulus and decreased ionic conductivity with increasing lithium salt concentration. The miscibility of the epoxy system with the electrolyte was also improved by substitution of EMIM-TFSI with an equal weight of an aprotic organic solvent, propylene carbonate (PC); however, the window of PC concentrations which resulted in structural electrolytes with bicontinuous microstructures was very narrow; at PC concentrations above 1 wt %, gel-like polymers with no permanent mesoporosity were obtained. KW - Functional composites KW - Mechanical properties KW - Elastic properties KW - Epoxy KW - Morphology KW - Electrolyte PY - 2014 U6 - https://doi.org/10.1021/jp507952b SN - 1932-7447 SN - 1089-5639 VL - 118 IS - 49 SP - 28377 EP - 28387 PB - Soc. CY - Washington, DC AN - OPUS4-34565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qian, Hui A1 - Bismarck, A. A1 - Greenhalgh, E.S. A1 - Kalinka, Gerhard A1 - Shaffer, M.S.P. T1 - Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level N2 - The feasibility of reinforcing conventional carbon fiber composites by grafting carbon nanotubes (CNTs) onto the fiber surface has been investigated. Carbon nanotubes were grown on carbon fibers using the chemical vapor deposition (CVD) method. Iron was selected as the catalyst and predeposited using the incipient wetness technique before the growth reaction. The morphology of the products was characterized using scanning electron microscopy (SEM), which showed evidence of a uniform coating of CNTs on the fiber surface. Contact angle measurements on individual fibers, before and after the CNT growth, demonstrated a change in wettability that can be linked to a change of the polarity of the modified surface. Model composites based on CNT-grafted carbon fibers/epoxy were fabricated in order to examine apparent interfacial shear strength (IFSS). A dramatic improvement in IFSS over carbon fiber/epoxy composites was observed in the single fiber pull-out tests, but no significant change was shown in the push-out tests. The different IFSS results were provisionally attributed to a change of failure mechanism between the two types of tests, supported by fractographic analysis. KW - Composites KW - Nano tubes KW - Grafting KW - Interface PY - 2008 U6 - https://doi.org/10.1021/cm702782j SN - 0897-4756 SN - 1520-5002 VL - 20 IS - 5 SP - 1862 EP - 1869 PB - American Chemical Society CY - Washington, DC AN - OPUS4-34568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -