TY - JOUR A1 - Ruffini, A. A1 - Le Bouar, Y. A1 - Finel, A. A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Viguier, B. A1 - Poquillon, D. T1 - Dislocations interacting with a pore in an elastically anisotropic single crystal nickel-base superalloy during hot isostatic pressing JF - Computational materials science N2 - The formation of pores in CMSX-4 nickel based superalloys is detrimental to the service life of the material. A way to avoid the problem is to treat the superalloys under Hot Isostatic Pressing (HIP), which enables a large volume fraction of pores to be annihilated. This paper aims to understand the contribution of plastic activity related to the gliding of dislocations on the pore annihilation. Simulations based on a phase-field model of dislocation are performed and make it possible to consider the strong anisotropy of the CMSX-4 under HIP conditions in conjunction to the strong elastic heterogeneity introduced by the pore. For pores with a radius of few micrometers, it is shown that edge parts of dislocation lines that present an extra half atomic plane oriented towards the pore are stacked above and under it in the direction which is perpendicular to their slip-planes, causing an increase of the number of dislocation along the four octahedral directions of the FCC single crystal which intersect the pore center. Results are streamlined within the isotropic elastic theory of dislocations. Effects of elastic anisotropy and dislocation reactions are also investigated in order to specify what would be the dislocation configuration around a pore in CMSX-4 under HIP conditions. Notably, the elastic anisotropy is shown to significantly modify the arrangement of dislocations close to the pore equator. Simulations also allow for the characterization of pore/dislocation interactions when dislocations are involved in Low Angle Boundaries as experimentally observed. KW - HIP KW - Superalloys KW - Dislocation KW - Pore KW - Phase-field PY - 2022 DO - https://doi.org/10.1016/j.commatsci.2021.111118 SN - 0927-0256 VL - 204 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-54220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Viguier, B. A1 - Schriever, Sina A1 - Svetlov, I. L. A1 - Petrushin, N. V. A1 - Saillard, R. A1 - Proietti, A. A1 - Poquillon, D. A1 - Chyrkin, A. T1 - Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C JF - Materials Science & Engineering A N2 - A γ-analogue of the superalloy CMSX-4 that does not contain the strengthening γ′ -phase and only consists of the γ-solid solution of nickel has been designed, solidified as single-crystals of different orientations, and tested under creep conditions in the temperature range between 1150 and 1288 °C. The tests have revealed a very high creep anisotropy of this alloy, as was previously found for CMSX-4 at supersolvus temperature of 1288 °C. This creep anisotropy could be explained by the dominance of 〈011〉{111} octahedral slip. Furthermore, the analysis of the creep data has yielded a high value of the creep activation energy, Qc≈442 kJ/mol, which correlates with the high activation energy of Re diffusion in Ni. This supports the hypothesis that dislocation motion in the γ-matrix of Re-containing superalloys is controlled by the diffusion of the Re atoms segregating at the dislocation core. The Norton stress exponent n is close to 5, which is a typical value for pure metals and their alloys. The absence of γ′ -reprecipitation after high-temperature creep tests facilitates microstructural investigations. It has been shown by EBSD that creep deformation results in an increasing misorientation of the existing low angle boundaries. In addition, according to TEM, new low angle boundaries appear due to reactions of the a/2 〈011〉 mobile dislocations and knitting of new networks. KW - Nickel alloys KW - Single-crystals KW - Creep KW - Electron microscopy KW - Deformation mechanisms PY - 2021 DO - https://doi.org/10.1016/j.msea.2021.141880 SN - 0921-5093 VL - 825 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Bokstein, B. A1 - Svetlov, I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. A1 - Viguier, B. A1 - Poquillon, D. T1 - A vacancy model for pore annihilation during hot isostatic pressing of single-crystal nickel-base superalloys JF - Inorganic Materials: Applied Research N2 - An improved diffusion model is proposed for pore annihilation during HIP of single-crystal nickel-base superalloys. The model assumes the pore dissolution by emission of vacancies and their sink to the low angle boundaries. Calculation, considering distribution of the pore sizes, predicts the kinetics of pore annihilation similar to the experimental one. KW - Single crystal superalloys KW - Hot isostatic pressing (HIP) KW - Porosity KW - Diffusion KW - Vacancies PY - 2018 DO - https://doi.org/10.1134/S2075113318010100 SN - 2075-1133 VL - 9 IS - 1 SP - 57 EP - 65 PB - Pleiades Publishing, Ltd. AN - OPUS4-43990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Farzik Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature JF - Metallurgical and materials transactions A N2 - The creep behavior of single crystals of the nickel-based superalloy CMSX-4 was investigated at 1288 °C, which is the temperature of the hot isostatic pressing treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no gammaPrime-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g., the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-sectional area psi of [001] crystals reached nearly 100 pct, while for a [111] crystal psi = 62 pct. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals did not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. The recrystallization degree was found to be correlated with deformation behavior as well as with dwell time at high temperature. From the analysis of the obtained results (creep anisotropy, stress dependence of the creep rate, traces of shear deformation, and TEM observations), it was concluded that the main strain contribution resulted from <01-1>{111} octahedral slip. T2 - 3rd European Conference on Superalloys (‘Eurosuperalloys 2018’) CY - Oxford, UK DA - 9.9.2018 KW - Single-crystal KW - Superalloy KW - Creep KW - Isostatic hot pressing (HIP) PY - 2018 DO - https://doi.org/10.1007/s11661-018-4729-6 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3973 EP - 3987 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45660 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vattré, A. A1 - Fedelich, Bernard T1 - On the relationship between anisotropic yield strength and internal stresses in single crystal superalloys JF - Mechanics of materials N2 - The present work focuses on the cubic slip phenomenon in single crystal superalloys with a high fraction of γ' precipitates at high temperature. The macroscopically apparent cubic slip mechanism is known to significantly reduce the tensile and creep strength of <1 1 1> oriented specimens. However, recent results obtained by 3D dislocation dynamics (Vattré et al., 2009) suggest a new interpretation of the so-called pseudo-cubic slip related to the nature of the dislocation network formation at the interfaces. These results are taken into account in a micromechanical model to improve the estimation of the strain hardening anisotropy. In accordance with the discrete simulations, it is shown that a key role is played by the combination of the activated octahedral slip systems as a function of the crystal orientation. In the <1 1 1> case, the contribution of the activated systems to kinematical hardening compensate, whereas strain hardening remains high for the <0 0 1> case. The experimental dependence of plastic flow on the orientation is also explained at the dislocation-scale mechanisms. Results are presented for the alloy CMSX-4 in several orientations. KW - Nickel-base superalloys KW - High-temperature deformation KW - Micromechanical modeling KW - Strengthening mechanisms PY - 2011 DO - https://doi.org/10.1016/j.mechmat.2011.07.007 SN - 0167-6636 SN - 1872-7743 VL - 43 IS - 12 SP - 930 EP - 951 PB - Elsevier CY - Amsterdam AN - OPUS4-24927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Apel, E. A1 - Deubener, J. A1 - Bernard, A. A1 - Müller, Ralf A1 - Kappert, H. A1 - Rheinberger, V. A1 - Höland, W. T1 - Phenomena and mechanisms of crack propagation in glass-ceramics JF - Journal of the mechanical behaviour of biomedical materials N2 - Lithium disilicate, leucite and apatite glass-ceramics have become state-of-the-art framework materials in the fabrication of all-ceramic dental restorative materials. The goal of this study was to examine the crack propagation behaviour of these three known glass-ceramic materials after they have been subjected to Vickers indentation and to characterize their crack opening profiles (δmeas vs. (a-r)). For this purpose, various methods of optical examination were employed. Optical microscopy investigations were performed to examine the crack phenomena at a macroscopic level, while high-resolution techniques, such as scanning electron microscopy (SEM) and atomic force microscopy (AFM), were employed to investigate the crack phenomena at a microscopic level. The crack patterns of the three glass-ceramics vary from fairly straightforward to more complex, depending on the amount of residual glass matrix present in the material. The high-strength lithium disilicate crystals feature a high degree of crosslinking, thereby preventing crack propagation. In this material, the crack propagates only through the residual glass phase, which constitutes 30%–40% by volume. Having a high glass content of more than 65% by volume, the leucite and apatite glass-ceramics show far more complex crack patterns. Cracks in the leucite glass-ceramic propagate through both the glass and crystal phase. The apatite glass-ceramic shows a similar crack behaviour as an inorganic–organic composite material containing nanoscale fillers, which are pulled out in the surroundings of the crack tip. The observed crack behaviour and the calculated View the MathML source values of the three types of glass-ceramics were compared to the Kkic values determined according to the SEVNB method. KW - Glass KW - Viscosity KW - Water content PY - 2008 DO - https://doi.org/10.1016/j.jmbbm.2007.11.005 SN - 1751-6161 VL - 1 IS - 4 SP - 313 EP - 325 PB - Elsevier CY - Amsterdam AN - OPUS4-18308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholz, A. A1 - Nazmy, M. A1 - Fedelich, Bernard A1 - Tinga, T. A1 - Huls, R. T1 - Modelling of microstructure and mechanical property changes in gas turbine alloys T2 - 9th Liège conference: Materials for advanced power engineering 2010 (Proceedings) T2 - 9th Liège conference: Materials for advanced power engineering 2010 CY - Liège, Belgium DA - 2010-09-27 KW - Nickel base superalloys KW - Degradation KW - Modelling KW - Microstructure KW - Mechanical properties PY - 2010 SP - 567 EP - 587 AN - OPUS4-22261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Link, T. A1 - Feldmann, Titus A1 - Svetlov, I.L. T1 - Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling JF - Materials science and engineering A N2 - Pore annihilation during hot isostatic pressing (HIP) was investigated in the single-crystal nickel-base superalloy CMSX-4 experimentally by interrupted HIP tests at 1288 °C/103 MPa. The kinetics of pore annihilation was determined by density measurement and quantitative metallography. Transmission electron microscopy of a HIPed specimen showed that the pores shrink via dislocation movement on octahedral glide planes. Theoretically pore closure under HIP condition was modelled by the finite element method using crystal plasticity and large strain theories. The modelling gives a similar kinetics of pore annihilation as observed experimentally, however somewhat higher annihilation rate. KW - Nickel based superalloys KW - Electron microscopy KW - Crystal plasticity KW - Bulk deformation KW - Finite element method PY - 2013 DO - https://doi.org/10.1016/j.msea.2013.08.034 SN - 0921-5093 SN - 1873-4936 VL - 586 SP - 342 EP - 349 PB - Elsevier CY - Amsterdam AN - OPUS4-29418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feldmann, Titus A1 - Fedelich, Bernard A1 - Epishin, A. T1 - Simulation of Hot Isostatic Pressing in a Single-Crystal Ni Base Superalloy with the Theory of Continuously Distributed Dislocations Combined with Vacancy Diffusion JF - Advanced Engineering Materials N2 - Single-crystal components made of nickel base superalloys contain pores after casting and homogenization heat treatment. Hot isostatic pressing (HIP), which is carried above the γ' -solvus temperature of the alloy, is industrially applied to reduce porosity. A modeling of HIP based on continuously distributed dislocations is developed in a 2D setting. Glide and climb of straight-edge dislocations, as well as vacancy diffusion, are the deformation mechanisms taken into account. Thereby, dislocation glide is controlled by dragging a cloud of large atoms, and climb is controlled by vacancy diffusion. Relying on previous investigations of the creep behavior at HIP temperatures, it is assumed that new dislocations are nucleated at low-angle boundaries (LAB) and move through subgrains until they either reach the opposite LABs or react with other dislocations and annihilate. Vacancies are created at the pore surface and diffuse through the alloy until they are either consumed by climbing dislocations or disappear at the LABs. The field equations are solved by finite elements. It is shown that pore shrinking is mostly controlled by vacancy diffusion as the shear stresses at the LABs are too low to nucleate a sufficient amount of dislocations. KW - Nickel-base superalloys KW - HIP KW - Dislocation KW - Creep KW - Model PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542309 DO - https://doi.org/10.1002/adem.202101341 VL - 2022 PB - Wiley AN - OPUS4-54230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Heuser, M. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. A1 - Fedelich, Bernard T1 - Refinement and Experimental Validation of a Vacancy Model of Pore Annihilation in Single-Crystal Nickel-Base Superalloys during Hot Isostatic Pressing JF - Advanced Engineering Materials N2 - Initially, as-cast and homogenized single crystals of nickel-base superalloy CMSX-4 are subjected to hot isostatic pressing at 1288 °C. Two series of experiments are conducted: under the same pressure of 103 MPa but with different durations, between 0.5 and 6 h, and under different pressures, between 15 and 150 MPa, but for the same time of 0.5 h. The porosity annihilation is investigated metallographically and by high-resolution synchrotron X-ray tomography. The obtained experimental results are compared with the predictions of the vacancy model proposed recently in the group. Herein, the model is further refined by coupling with X-ray tomography. The model describes the evolution of the pore arrays enclosed in the 3D synchrotron tomograms during hot isostatic pressing and properly predicts the time and stress dependences of the pore annihilation kinetics. The validated model and the obtained experimental results are used for selecting the optimal technological parameters such as applied pressure and processing time KW - Superalloys KW - HIP KW - Single-Crystal KW - Diffusion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526859 DO - https://doi.org/10.1002/adem.202100211 VL - 23 IS - 7 SP - 211 AN - OPUS4-52685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Brückner, Udo A1 - Link, T. A1 - Fedelich, Bernard T1 - X-ray reflections from the Gamma/Gamma'-microstructure of nickel-base superalloys: effect of the plane tilting JF - International journal of materials research N2 - The shape of X-ray reflections from the cuboidal γ/γ'-microstructure was investigated. The measurements were performed on the 4th generation single-crystal nickel-base superalloy TMS138. It is shown that reflections from non-cubic crystallographic planes split not only in d-scale due to the different spacing of the γ- and γ'-lattices but also in the pole figure due to the tilting of γ-lattice planes. This tilting results from the elastic distortion of the γ-lattice caused by the γ/γ'-misfit. The results obtained are discussed under the methodical aspect of misfit measurement. KW - Nickel-base alloys KW - X-ray diffraction KW - Lattice distortion PY - 2010 DO - https://doi.org/10.3139/146.110315 SN - 1862-5282 VL - 101 IS - 5 SP - 589 EP - 593 PB - Carl Hanser CY - München AN - OPUS4-21512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Link, T. A1 - Epishin, A. A1 - Fedelich, Bernard T1 - Inhomogeneity of misfit stresses in nickel-base superalloys: Effect on propagation of matrix dislocatiion loops JF - The philosophical magazine N2 - It is shown experimentally that, during annealing and creep under low applied stresses, matrix dislocation loops frequently cross-glide. The periodic length of the zigzag dislocations deposited in the interfaces is equal to that of the γ/γ'-microstructure. Initially, the zigzag dislocations move in the (001) interface by a combination of glide and climb but then they stop near the γ'-edges and align along (100). Reactions of such dislocations lead to the formation of square interfacial networks consisting of (100) oriented edge dislocations. The complex dislocation movement is explained by the inhomogeneity of the misfit stresses between γ- and γ'-lattices. The tensile components of the stress tensor drive the dislocations through the channel, whereas the shear components near the γ'-edges cause the zigzag movement and the (100) alignment. The total effect is the most efficient relaxation of the misfit stresses. The results are relevant, especially for single-crystal superalloys of the newest generations, which have an increased γ/γ'-misfit due to the high level of refractory elements. KW - Superalloy KW - Creep KW - Dislocation KW - Misfit stress PY - 2009 DO - https://doi.org/10.1080/14786430902877810 SN - 1478-6435 SN - 0031-8086 VL - 89 IS - 13 SP - 1141 EP - 1159 PB - Taylor & Francis CY - London AN - OPUS4-19522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Haftaoglu, Cetin A1 - Nolze, Gert A1 - Schriever, Sina A1 - Epishin, A. A1 - Camin, B. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. T1 - Untersuchung des Kriechverhaltens einer Nickelbasis-Superlegierung bei ultrahohen homologen Temperaturen und Anwendung auf das heiß-isostatische Pressen (HIP) T2 - Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe N2 - Mit Hilfe des HIP-Verfahrens („Hot Isostatic Pressing“) werden Poren in der einkristallinen Nickel-Basis Superlegierung CMSX-4 kontinuierlich geschrumpft und dadurch die nach der Erstarrung und der Wärmebehandlung vorhandene Porosität stark reduziert. In diesem Beitrag werden experimentelle und numerische Untersuchungen zu den Mechanismen der Porenschrumpfung zusammengefasst. Es zeigt sich, dass das Verformungsverhalten während Kriechversuchen bei der HIP-Temperatur durch Versetzungsgleitung auf oktaedrischen Ebenen dominiert wird. Dagegen zeigen Messungen der Porositätsabnahme und Simulationen des Porenschließens, dass die Kinetik der Porenschrumpfung durch das Phänomen der Leerstellendiffusion zwischen Poren und Kleinwinkelkorngrenzen („Low Angle Boundary“, LAB) bestimmt wird. Im Gegensatz führt die klassische Kristallviskoplastizität zu einer systematischen Überschätzung dieser Kinetik. Der scheinbare Widerspruch lässt sich auflösen, wenn man bedenkt, dass auf der Skala der Poren Versetzungsquellen nicht gleichmäßig verteilt sind, wie in der konventionellen Kristallplastizität implizit angenommen wird. Stattdessen wird in einem weiterführenden Modell davon ausgegangen, das Kleinwinkelkorngrenzen (LABs) als Versetzungsquellen fungieren, während die Scherspannungen sehr stark in der Nähe der Poren lokalisiert sind, was die Emission von Versetzungen deutlich reduziert. T2 - Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe CY - Online meeting DA - 27.11.2020 KW - HIP KW - Superlegierung KW - Kriechen PY - 2020 SN - 978-3-946885-95-5 VL - 2020 SP - 28 EP - 39 PB - Forschungsvereinigung Warmfeste Stähle und Hochtemperaturwerkstoffe AN - OPUS4-51796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Künecke, Georgia A1 - Portella, Pedro Dolabella ED - Huron, E.S. ED - Reed, R.C. ED - Hardy, M.C. ED - Mills, M.J. ED - Montero, R.E. ED - Portella, Pedro Dolabella ED - Telesman, J. T1 - Rafting during high temperature deformation in a single crystal superalloy: experiments and modeling T2 - Superalloys 2012 - 12th International symposium on superalloys (Proceedings) T2 - Superalloys 2012 - 12th International symposium on superalloys CY - Seven, Springs, PA, USA DA - 2012-09-09 KW - Creep KW - Single crystal KW - Rafting KW - Modeling KW - CMSX-4 KW - Low-cycle-fatigue PY - 2012 SP - 491 EP - 500 PB - Wiley AN - OPUS4-26842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit ED - Maruyama, K. ED - Abe, F. ED - Igarashi, M. ED - Kishida, K. ED - Suzuki, M. ED - Yoshimi, K. T1 - Implementation of creep induced rafting into mechanical modelling of superalloys T2 - 12th International conference on creep and fracture of engineering materials and structures (Proceedings) T2 - 12th International conference on creep and fracture of engineering materials and structures CY - Kyoto, Japan DA - 2012-05-27 KW - Single-crystal nickel-base superalloys KW - Microstructural degradation KW - Creep KW - Modelling KW - Rafting PY - 2012 SP - 1 EP - 4(?) AN - OPUS4-27564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C JF - Crystals N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520972 DO - https://doi.org/10.3390/cryst11020152 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Künecke, Georgia A1 - Portella, Pedro Dolabella T1 - Experimental characterization and mechanical modeling of creep induced rafting in superalloys JF - Computational materials science N2 - A constitutive model has been developed for the high temperature mechanical behavior of single crystal superalloys, including rafting and its consequences. The flow stress depends on the γ channel width via the Orowan stress. An evolution equation for channel widening during high temperature straining has been derived and calibrated with measurements. Therein, rafting is assumed to be driven by the relaxation of internal stresses. The model is able to represent the mechanical softening at high stresses consecutive to rafting. The model has been applied to simulate rafting during uniaxial creep in several crystal orientations, in notched specimens as well as in cyclically loaded specimens. KW - Single crystal KW - Superalloys KW - Rafting KW - Creep KW - Viscoplasticity KW - Constitutive law PY - 2012 DO - https://doi.org/10.1016/j.commatsci.2012.05.071 SN - 0927-0256 VL - 64 SP - 2 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-26401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Fedelich, Bernard A1 - Brückner, Udo A1 - Portella, Pedro Dolabella T1 - New technique for characterization of microstructural degradation under creep: Application to the nickel-base superalloy CMSX-4 JF - Materials science and engineering A N2 - A new experimental technique (repeated load annealing of flat wedge shaped specimens) was proposed for characterization of microstructural degradation under creep conditions. This technique was applied to investigate the microstructural degradation of the nickel-base superalloy CMSX-4 in a wide range of temperatures and stress levels. The results obtained allowed to describe analytically the kinetics of rafting, which is important to predict the reduction of fatigue lifetime and yield stress. KW - Microstructural degradation KW - Nickel-base superalloys KW - Rafting PY - 2009 DO - https://doi.org/10.1016/j.msea.2008.04.135 SN - 0921-5093 SN - 1873-4936 VL - 510-511 SP - 262 EP - 265 PB - Elsevier CY - Amsterdam AN - OPUS4-19354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedelich, Bernard A1 - Künecke, Georgia A1 - Epishin, A. A1 - Link, T. A1 - Portella, Pedro Dolabella T1 - Constitutive modelling of creep degradation due to rafting in single-crystalline Ni-base superalloys JF - Materials science and engineering A N2 - A constitutive model for the mechanical behaviour of single-crystalline superalloys at high temperatures has been developed. The model relies on the slip system theory and is able to predict rafting and its influence on plastic flow. The kinetics of rafting are assumed to be driven by the reduction of the internal stresses represented by the macroscopic back-stress. The rafting effect is incorporated in the model through the dependence of the Orowan stress on the channel width. The model has been validated for the alloy CMSX-4 at 950 °C. The rafting part of the model has been calibrated by measurements of the channel widths after several levels of creep strains and for several loads. KW - Single crystal superalloy KW - Creep KW - Rafting KW - Constitutive modelling KW - Viscoplasticity PY - 2009 DO - https://doi.org/10.1016/j.msea.2008.04.089 SN - 0921-5093 SN - 1873-4936 VL - 510-511 SP - 273 EP - 277 PB - Elsevier CY - Amsterdam AN - OPUS4-19353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Fedelich, Bernard A1 - Svetlov, I.L. A1 - Golubovskiy, E.R. T1 - Hot isostatic pressing of single-crystal nickel-base superalloys: mechanism of pore closure and effect on mechanical properties T2 - Eurosuperalloys 2014 - 2nd European symposium on superalloys and their applications N2 - Pore annihilation was investigated in the single-crystal nickel-base superalloy CMSX-4. HIP tests at 1288 °C/103 MPa were interrupted at different times, then the specimens were investigated by TEM, metallography and density measurements. The kinetics of pore annihilation was determined. The pore closure mechanism was identified as plastic deformation on the octahedral slip systems. A model describing the kinetics of pore closure has been developed on the base of crystal plasticity and large strain theory. Mechanical tests with the superalloy CMSX-4 and the Ru-containing superalloy VGM4 showed, that HIP significantly increases the fatigue life at low temperatures but has no effect on creep strength. T2 - Eurosuperalloys 2014 - 2nd European symposium on superalloys and their applications CY - Giens, France DA - 12.05.2014 PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-316410 DO - https://doi.org/10.1051/matecconf/20141408003 N1 - Serientitel: MATEC Web of conferences – Series title: MATEC Web of conferences VL - 14 SP - 08003-1 EP - 08003-6 PB - EDP Sciences AN - OPUS4-31641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Schriever, Sina T1 - Creep behaviour of the single-crystal nickel-base superalloy CMSX-4 at ultra-high homologous temperature T2 - CREEP 2015 - 13th International conference on creep and fracture of engineering materials and structures N2 - Data about the creep behaviour of metals and their alloys at temperatures close to the melting point are very limited. The reason is that most engineering alloys are used at temperatures below 0.6-0.8 of their melting point, so, Investigation of creep at higher temperatures has no practical relevance. For some special applications however it is important, in our case hot isostatic pressing (HIP) of single-crystal turbine blades cast from nickel-base superalloys. In order to remove porosity the blades are HlPed at temperatures between y'-solvus and solidus where superalloy has no strengthening y'-phase and therefore is very soft. For example, the Company Howmet Castings HIPs the superalloy CMSX-4 at the temperature 1288aC, which corresponds to a homologous temperature of about 0.97=1561 K/1612 K (solidus temperature). Therefore knowledge about the creep behaviour of CMSX-4 at this temperature and understanding of the creep mechanisms are necessary to model the kinetics of pore closure during HIP as well as to plan the Parameters of the HIP process. T2 - CREEP 2015 - 13th International conference on creep and fracture of engineering materials and structures CY - Toulouse, France DA - 31.5.2015 PY - 2015 VL - 825 SP - 19 EP - 20 AN - OPUS4-33527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -