TY - JOUR A1 - Mans, C. A1 - Simons, C. A1 - Hanning, S. A1 - Janßen, A. A1 - Alber, D. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Bühler, A. A1 - Kreyenschmidt, M. T1 - New polymeric candidate reference materials for XRF and LA-ICP-MS - development and preliminary characterization JF - X-ray spectrometry N2 - A set of ten calibration materials based on acrylonitrile-butadiene-styrene terpolymer (ABS) containing the elements Br, Pb, Cd, Cr, and Hg was produced in order to control polymer samples in regard to the restriction on the use of certain hazardous substances (RoHS) directive. The materials were produced with respect to the special demands of X-ray fluorescence analysis (XRF) and inductively coupled plasma mass spectrometry in combination with laser ablation (LA-ICP-MS). The mass fractions of all elements were 0-1500 mg/kg and the materials were produced as granulates and solid discs with a diameter of 40 mm and thicknesses of 1, 2, and 6 mm. It could be shown that the signals measured by XRF strongly depend on the thickness of polymeric samples. Macroscopic homogeneity was assessed with XRF measuring a total of 180 samples. The microscopic homogeneities were determined for a material with average elemental mass fractions with the aid of synchrotron radiation (SR) µ-XRF and LA-ICP-MS. Sufficient macroscopic and microscopic homogeneities for all elements could be achieved. It was observed that organic additives show a better homogeneity than oxides. XRF and LA-ICP-MS were successfully calibrated with the new materials. Limits of detection were in the range of 0.4-22 mg/kg for XRF and 2.3-26.8 mg/kg for LA-ICP-MS. The materials are considered as candidate reference materials (RM) by the Federal Institute of Materials Research and Testing (BAM, Germany). KW - XRF KW - LA.ICP-MS Plastics KW - RoHS KW - CRM PY - 2009 DO - https://doi.org/10.1002/xrs.1120 SN - 0049-8246 VL - 38 IS - 1 SP - 52 EP - 57 PB - Wiley CY - Chichester AN - OPUS4-18681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühler, M. M. A1 - Hollenbach, P. A1 - Michalski, A. A1 - Meyer, S. A1 - Birle, E. A1 - Off, R. A1 - Lang, Ch. A1 - Schmidt, Wolfram A1 - Cudmani, R. A1 - Fritz, O. A1 - Baltes, G. A1 - Kortmann, G. T1 - The Industrialisation of Sustainable Construction: A Transdisciplinary Approach to the Large-Scale Introduction of Compacted Mineral Mixtures (CMMs) into Building Construction JF - The Industrialisation of Sustainable Construction: A Transdisciplinary Approach to the Large-Scale Introduction of Compacted Mineral Mixtures (CMMs) into Building Construction N2 - Abstract: Increasing demand for sustainable, resilient, and low-carbon construction materials has highlighted the potential of Compacted Mineral Mixtures (CMMs), which are formulated from various soil types (sand, silt, clay) and recycled mineral waste. This paper presents a comprehensive inter- and transdisciplinary research concept that aims to industrialise and scale up the adoption of CMM-based construction materials and methods, thereby accelerating the construction industry’s systemic transition towards carbon neutrality. By drawing upon the latest advances in soil mechanics, rheology, and automation, we propose the development of a robust material properties database to inform the design and application of CMM-based materials, taking into account their complex, time-dependent behaviour. Advanced soil mechanical tests would be utilised to ensure optimal performance under various loading and ageing conditions. This research has also recognised the importance of context-specific strategies for CMM adoption. We have explored the implications and limitations of implementing the proposed framework in developing countries, particularly where resources may be constrained. We aim to shed light on socio-economic and regulatory aspects that could influence the adoption of these sustainable construction methods. The proposed concept explores how the automated production of CMM-based wall elements can become a fast, competitive, emission-free, and recyclable alternative to traditional masonry and concrete construction techniques. We advocate for the integration of open-source digital platform technologies to enhance data accessibility, processing, and knowledge acquisition; to boost confidence in CMM-based technologies; and to catalyse their widespread adoption. We believe that the transformative potential of this research necessitates a blend of basic and applied investigation using a comprehensive, holistic, and transfer-oriented methodology. Thus, this paper serves to highlight the viability and multiple benefits of CMMs in construction, emphasising their pivotal role in advancing sustainable development and resilience in the built environment. KW - Decarbonisation KW - Circular economy KW - Recycled materials KW - Demolition wastes KW - Low-carbon construction KW - Building with earth KW - Compressed earth KW - Rammed earth KW - Sustainable construction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583260 DO - https://doi.org/10.3390/su151310677 VL - 15 IS - 13 SP - 1 EP - 25 PB - MDPI AN - OPUS4-58326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -