TY - JOUR A1 - Strüder, L. A1 - Hartmann, R. A1 - Holl, P. A1 - Ihle, S. A1 - Huth, M. A1 - Schmidt, J. A1 - Tham, Ch. A1 - Kanngießer, B. A1 - Baumann, J. A1 - Renno, A. A1 - Grenzer, J. A1 - Radtke, Martin A1 - Abboud, A. A1 - Pietsch, U. A1 - Soltau, H. T1 - High Speed, High Resolution imaging spectrometers based on pnCCDs for XRF and XRD applications JF - Microscopy and Microanalysis N2 - For many years pnCCDs have been well known as X-ray detectors for spectroscopic imaging in many fields of science: X-Ray Fluorescence analysis (XRF), X-ray Diffraction (XRD) with light sources in large accelerator facilities as well as with laboratory light sources or with X-rays from celestial sources in X-ray astronomy. A brief introduction in GEXRF (Grazing Emission XRF) measurements with a laboratory laser produced plasma source will be given, PIXE (Particle Induced X-ray Emission) measurements and D2XRF (Double Dispersive X-Ray Fluorescence) and Slicing experiments with pnCCDs coupled to polycapillary optics performed at the BESSY synchrotron will be shown. Energy-dispersive Laue diffraction with ultra-hard X-rays for the analysis of defects in metals will conclude the overview of spectroscopic X-ray imaging measurements in the field of structure and dynamics of matter. KW - PnCCD KW - Synchrotron KW - XRF PY - 2016 DO - https://doi.org/10.1017/S1431927616001355 VL - 22 IS - S3 SP - 100 EP - 101 AN - OPUS4-38884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abboud, M. A1 - Motallebzadeh, A. A1 - Duygulu, O. A1 - Maaß, Robert A1 - Özerinc, S. T1 - Microstructure and nanomechanical behavior of sputtered CuNb thin films JF - Intermetallics N2 - We report on the mechanical properties of Cu–Nb alloys produced by combinatorial magnetron sputtering. Depending on the composition, the microstructure is either fully amorphous (~30–65 at.% Cu), a dispersion of Cu crystallites in an amorphous matrix (~70 at.%), or a dominant crystalline phase with separated nanoscale amorphous zones (~80 at.% Cu). Nanomechanical probing of the different microstructures reveals that the hardness of the fully amorphous alloy is much higher than a rule of mixture would predict. We further demonstrate a remarkable tunability of the resistance to plastic flow, ranging from ca. 9 GPa in the amorphous regime to ca. 2 GPa in the fully crystalline regime. We rationalize these findings based on fundamental structural considerations, thereby highlighting the vast structure-property design space that this otherwise immiscible binary alloy provides. KW - Deposition microstructure KW - Metallic glasses KW - Thin films KW - Mechanical properties KW - Nanocrystalline structure PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107249 SN - 0966-9795 VL - 136 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -