TY - JOUR A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, Dietmar A1 - Meng, Birgit A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Hirsch, Tamino A1 - Manninger, Tanja T1 - Effect of gypsum on the hydration of fused cement clinker from basic oxygen furnace slag N2 - Fused cement clinker can be produced from molten basic oxygen furnace slag (BOFS) by way of a reductive thermochemical treatment. During the thermochemical treatment, oxidic iron is reduced to metallic iron and separated. The resulting low-iron slag has a chemical and mineralogical composition similar to ordinary Portland cement (OPC) clinker. In this study, the hydraulic reactivity of the fused clinker from BOFS with and without gypsum was investigated using isothermal calorimetry, differential scanning calorimetry, in situ X-ray diffraction and powder X-ray diffraction. Furthermore, a synthetic fused clinker without foreign ions and fused clinker produced by a mixture of both materials was studied. The hydraulic reaction of the fused clinker from BOFS was considerably slower than that of OPC. However, the reaction can be accelerated by adding gypsum as a sulfate carrier. Furthermore, the results showed an increased reaction rate with decreasing content of foreign ions such as Fe, P or Mn. KW - General Materials Science KW - Building and Construction PY - 2024 U6 - https://doi.org/10.1680/jadcr.23.00070 SN - 0951-7197 SP - 1 EP - 19 PB - Telford AN - OPUS4-59391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Manninger, Tanja A1 - von Werder, Julia A1 - Dehn, F. A1 - Gorbushina, Anna A1 - Meng, Birgit T1 - Bioreceptivity of concrete - A review N2 - Materials that support natural biodiversity on their surfaces can compensate for human activities that have a negative impact on nature and thus contribute to a carbon-neutral and nature-positive world. Specifically designing bioreceptive materials which favor the growth of biofilms on their surface is an approach complementing conventional, macroscopic green façades. But what exactly characterizes a bioreceptive substrate and how do biofilm and substrate interact? How and why does a spontaneous colonization and the formation of biofilms take place? What are biofilms and how can they be established in a laboratory setting? How can this existing knowledge be transferred to the artificial stone concrete so that this material can be tuned to increase (or decrease) its bioreceptivity? This review paper aims at summarizing the existing state of knowledge on bioreceptive concrete and pointing out inconsistencies and contradictions which can only be removed by more interdisciplinary research in the field. KW - Bioreceptivity KW - Biofilm KW - Green facades KW - Developing building materials KW - Surface interactions KW - Concrete PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581685 SN - 2352-7102 VL - 76 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-58168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - von Werder, Julia A1 - Manninger, Tanja A1 - Maier, Bärbel A1 - Fladt, Matthias A1 - Simon, Sebastian A1 - Gardei, Andre A1 - Höhnel, Desirée A1 - Pirskawetz, Stephan A1 - Meng, Birgit T1 - A multiscale and multimethod approach to assess and mitigate concrete damage due to alkali-silica reaction N2 - Alkali-silica reaction (ASR) is a chemical reaction within concrete which can lead over time to cracking and spalling. Due to the complexity of the problem, it still causes damage to concrete constructions worldwide. The publication aims to illustrate the interdisciplinary research of the German Federal Institute for Materials Research and Testing (BAM) within the last 20 years, considering all aspects of ASR topics from the macro to the micro level. First, methods for characterization and assessment of ASR risks and reaction products used at BAM are explained and classified in the international context. Subsequently the added value of the research approach by combining different, preferably nondestructive, methods across all scales is explained using specific examples from a variety of research projects. Aspects covered range from the development of new test-setups to assess aggregate reactivity, to analysis of microstructure and reaction products using microscopical, spectroscopical and X-ray methods, to the development of a testing methodology for existing concrete pavements including in-depth analysis of the visual damage indicator and the de-icing salt input using innovative testing techniques. Finally, research regarding a novel avoidance strategy that makes use of internal hydrophobization of the concrete mix is presented. KW - Mitigation strategies KW - Concrete KW - Damage analysis KW - Alkali silica reaction KW - Road pavement KW - Accelerated testing KW - Non-destructive testing KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:101:1-2022052515100075090235 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 36 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, D. A1 - Meng, Birgit A1 - Simon, Sebastian A1 - von Werder, Julia T1 - Synthesis and characterisation of alites from reduced basic oxygen furnace slags N2 - Basic oxygen furnace slags (BOFS) are by-products of the steelmaking process. Several researchers have studied the production of Portland cement clinker and metallic iron from BOFS via a reductive treatment. In this study, we applied a carbothermal reduction of BOFS in a technical-scale electric arc furnace and characterised the clinker-like products. Those clinker-like non-metallic products (NMPs) had a chemical and mineralogical composition comparable to clinker for ordinary Portland cement (OPC) and contained large elongated alite crystals as major component. The pure NMPs reacted more slowly and achieved a lower degree of hydration compared with commercial OPC. If the reactivity of the products can be further increased by employing specific adaptations, it can be used as a full clinker substitute for OPC. Nevertheless, it is also an option to use the material without further modifications as a cement component or concrete addition, which contributes to the strength development in both cases. KW - BOFS KW - Hydration products KW - Thermal analysis KW - X-ray diffraction PY - 2021 U6 - https://doi.org/10.1016/j.cemconres.2021.106518 SN - 0008-8846 VL - 147 SP - 6518 PB - Elsevier Ltd. AN - OPUS4-52939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Werder, Julia A1 - Simon, Sebastian A1 - Gardei, André A1 - Fontana, P. A1 - Meng, Birgit T1 - Thermal and hydrothermal treatment of UHPC: influence of the process parameters on the phase composition of ultra-high performance concrete N2 - Several studies show that thermal and hydrothermal treatment can further improve the excellent properties of UHPC in terms of mechanical strength and durability. While for the thermal treatment the increase in strength is attributed to an intensified pozzolanic and hydraulic reaction, for the hydrothermal treatment previous studies accredited it mostly to the formation of tobermorite. In the presented study thermal and hydrothermal treatment of UHPC samples was systematically varied and the phase formation analysed related to the strength development of a reference sample cured for 28 days in water. For the thermal treatment the results show that the strength increase depends on the protection against desiccation and can be ascribed to an improved pozzolanic reaction of the siliceous fillers. To achieve a significant enhancement of strength, a pre-storage time of few days and a long dwell time at elevated temperature/pressure are required. For the hydrothermal treatment already heating the specimens up to 185 °C in saturated steam followed by an immediate cooling leads to a substantial increase in compressive strength. Pre-storage time did not affect the result as far as a minimum of several hours is guaranteed. The improved performance is due to an increase in the pozzolanic and hydraulic reaction. Surprisingly, tobermorite was only found within a very thin layer at the surface of the sample, but not in the bulk. Sulphate and aluminium stemming from the decomposition of the ettringite are bound in the newly formed phases hydroxylellestadite and hydrogarnet. KW - UHPC KW - Thermal treatment KW - Hydrothermal treatment KW - Compressive strength KW - Phase development KW - Durability KW - Tobermorite KW - Hydroxylellestadite KW - Hydrogarnet PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523402 SN - 1871-6873 SN - 1359-5997 VL - 54 IS - 1 SP - Article 44 PB - Springer Nature AN - OPUS4-52340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Marieke A1 - von Werder, Julia A1 - Meng, Birgit T1 - Investigation of the zonation of thermally treated ultra high performance concrete N2 - Ultra high performance concrete (UHPC) is characterised by its high compressive strength of more than 120 MPa and its high durability. With thermal treatment at 90°C, hydration is accelerated and a strength comparable to the 28-day strength can be achieved immediately after the treatment. In applying Optimum process conditions, the strength can be even further increased by up to 30%. Previous Research showed that thermal treatment can lead to inhomogeneities in form of a visible zonation within the cross-section, if the UHPC is not protected sufficiently from desiccation. This led to the question, to what extent the related changes in mechanical properties, microstructure and phase composition are of relevance for the performance of the UHPC. First investigations of small specimens thermally treated without protection exhibited a decrease of compressive strength, indicating that the zonation aspect requires further research. In this study the zonation of UHPC treated thermally at 90°C is investigated after applying four different procedures of treatment and curing in comparison. The samples are characterized with respect to their chemistry, mineral composition and microstructure to allow an assessment on durability and strength development, with focus on potential depth dependent changes associated with the zonation. The measurements reveal the formation of a visible zonation in case of unprotected treatment, if followed by immersion in water. The compressive strength is not significantly impaired, but a decrease in bending strength gives reason for concern. Further results allow clear correlation with changes in pore structure, whereas the interpretation of relationships with phase distribution, degree of hydration, microchemistry is more complex and therefore, provides only partial clarification. KW - UHPC KW - Thermal treatment KW - Zonation KW - Desiccation KW - Microstructure KW - Durability PY - 2020 U6 - https://doi.org/10.1016/j.conbuildmat.2020.119187 VL - 254 SP - 119187 PB - Elsevier Ltd. AN - OPUS4-50828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -