TY - CONF A1 - von Törne, Wipert Jannik A1 - Piechotta, Christian T1 - GC-MS and GC-MS/MS Based Determination of Transformation Products and Major Phase I Metabolites of Warfarin N2 - Herein, we present the development of a gas chromatographic method for Determination of warfarin, its TPs, and selected metabolites. TPs were formed by applying UV-irradiation, ozonation, and an electrochemical cell coupled to mass spectrometry to mimic the oxidative phase I metabolism. The further aim is to use this method for detection and quantification under environmentally relevant conditions, as well as, toxicological assessment. T2 - SETAC GLB CY - Landau, Germany DA - 04.09.2019 KW - Warfarin KW - GC-MS KW - GC-MS/MS PY - 2019 AN - OPUS4-49307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Törne, Wipert Jannik A1 - Kotthoff, Lisa A1 - Piechotta, Christian T1 - Identifizierung und Charakterisierung technischer Transformationsprodukte von Warfarin N2 - Das Therapeutikum Warfarin ist bis heute der bekannteste Vertreter der antikoagulanten Rodentizide. In dieser Arbeit wurden Phase I Metabolite mittels einer elektrochemischen Durchflusszelle simuliert und analysiert. Weitere Transformations- und Abbauprozesse wurde durch UV-Bestrahlung und Ozonung generiert, gaschromatographisch getrennt und miteinander verglichen. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Warfarin PY - 2019 AN - OPUS4-47733 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Törne, Wipert Jannik A1 - Klyk-Seitz, Urszula-Anna A1 - Piechotta, Christian T1 - Developing a GC-EI-MS/MS method for quantifying warfarin and five hydroxylated metabolites generated by the Fenton reaction N2 - AbstractSince the 1950s, Warfarin has been used globally as both a prescription drug and a rodenticide. Research has shown that warfarin and other rodenticides are present in the environment and food chain. However, emerging contaminants are subject to degradation by biotic and abiotic processes and advanced oxidation processes. In some cases, detecting the parent compound may not be possible due to the formation of structurally changed species. This approach aims to identify hydroxylated transformation products of warfarin in a laboratory setting, even after the parent compound has undergone degradation. Therefore, the Fenton reaction is utilized to insert hydroxylation into the parent compound, warfarin, by hydroxyl and hydroperoxyl radicals generated by Fe2+/Fe3+ redox reaction with hydrogen peroxide. Using multiple reaction monitoring, a GC–MS/MS method, incorporating isotopically labeled reference compounds, is used to quantify the expected derivatized species. The analytes are derivatized using trimethyl-3-trifluoromethyl phenyl ammonium hydroxide, and the derivatization yield of warfarin is determined by using isotopically labeled reference compounds. The method has a linear working range of 30 to 1800 ng/mL, with detection limits ranging from 18.7 to 67.0 ng/mL. The analytes are enriched using a C18-SPE step, and the recovery for each compound is calculated. The Fenton reaction generates all preselected hydroxylated transformation products of warfarin. The method successfully identifies that 4′-Me-O-WAR forms preferentially under the specified experimental conditions. By further optimizing the SPE clean-up procedures, this GC–MS-based method will be suitable for detecting transformation products in more complex matrices, such as environmental water samples. Overall, this study provides a better understanding of warfarin’s degradation and offers a robust analytical tool for investigating its transformation products. KW - Health, Toxicology and Mutagenesis KW - Pollution KW - Environmental Chemistry KW - General Medicine PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595737 SN - 0944-1344 VL - 31 SP - 16986 EP - 16994 PB - Springer Science and Business Media LLC AN - OPUS4-59573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Törne, Wipert Jannik A1 - Steinhäuser, Lorin A1 - Klyk-Seitz, Urszula-Anna A1 - Piechotta, Christian T1 - High-resolution mass spectrometric elucidation of electron ionization induced fragmentation pathways of methylated warfarin and selected hydroxylated species N2 - The plant secondary metabolite families of coumarin and 4-hydroxy coumarin have a broad pharmacological spectrum ranging from antibacterial to anticancer properties. One prominent member of this substance class is the synthetic but naturally inspired anticoagulant drug and rodenticide warfarin (coumadin). A vast number of publications focus on the identification of warfarin and its major cytochrome P450-mediated phase I metabolites by liquid chromatography (LC) with mass spectrometry (MS) and tandem mass spectrometric (MS/MS) detection techniques. For the first time, electron ionization (EI) induced high-resolution quadrupole time-of-flight mass spectrometric (HR-qToF-MS) data of in-liner derivatized warfarin and selected hydroxylated species is provided in this study as an alternative to LC-MS/MS approaches. Furthermore, the characteristic fragments and fragmentation pathways of the analyzed methyl ethers are concluded. The obtained data of analytical standards, specific deuterated and 13C-labeled compounds prove inductive cleavage of the acyl or acetonyl side chain, methyl migration, and H-migration, along with consequential inductive cleavage as predominant fragmentation routes. Based on the HR-spectral data, commonalities and differences between the analyzed compounds and fragment groups were evaluated with future applicability in structure elucidation and spectra prediction of related compounds. KW - High-resolution mass spectrometry KW - Warfarin KW - Hydroxy warfarin KW - Fragmentation pathway PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-596025 SN - 1387-3806 VL - 499 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -