TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Jiang, D. A1 - Günster, Jens A1 - Zeng, Y.-P. A1 - Heinrich, J.G. T1 - Porous Si3N4 ceramics prepared via partial nitridation and SHS N2 - Porous Si3N4 ceramics were prepared via partial nitridation and self-propagating high temperature synthesis (SHS) process. Raw Si and additive Y2O3 were mixed and molded under 10 MPa into a compact, the compact was partial nitridation at 1300 °C to form a porous Si/Si3N4, and then it was buried in a Si/Si3N4 bed for SHS to obtain porous Si3N4 with rod-like β-Si3N4 morphology. The processing combined the advantages of the nitridation of Si and SHS with low cost, low shrinkage and time saving. Porous Si3N4 with a porosity of 47%, a strength of 143 MPa were obtained by this method. KW - Si3N4 KW - Strength KW - Porosity PY - 2013 U6 - https://doi.org/10.1016/j.jeurceramsoc.2012.08.033 SN - 0955-2219 SN - 1873-619X VL - 33 IS - 2 SP - 371 EP - 374 PB - Elsevier CY - Oxford AN - OPUS4-31282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Jiang, D. A1 - Günster, Jens A1 - Zeng, Y.-P. A1 - Heinrich, J.G. T1 - The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics N2 - Porous silicon nitride ceramics were prepared via sintered reaction bonded silicon nitride at 1680 °C. The grain size of nitrided Si3N4 and diameter of post-sintered ß-Si3N4 are controlled by size of raw Si. Porosity of 42.14–46.54% and flexural strength from 141 MPa to 165 MPa were obtained. During post-sintering with nano Y2O3 as sintering additive, nano Y2O3 can promote the formation of small ß-Si3N4 nuclei, but the large amount of ß-Si3N4 (>20%) after nitridation also works as nuclei site for precipitation, in consequence the growth of fine ß-Si3N4 grains is restrained, the length is shortened, and the improvement on flexural strength is minimized. The effect of nano SiC on the refinement of the ß-Si3N4 grains is notable because of the pinning effect, while the effect of nano C on the refinement of the ß-Si3N4 grains is not remarkable due to the carbothermal reaction and increase in viscosity of the liquid phase. KW - Porous ceramics KW - Silicon nitride KW - Reaction bonding KW - Anisotropic grain growth KW - Ceramic PY - 2014 U6 - https://doi.org/10.1016/j.jeurceramsoc.2014.06.018 SN - 0955-2219 SN - 1873-619X VL - 34 IS - 15 SP - 3461 EP - 3467 PB - Elsevier CY - Oxford AN - OPUS4-32542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Zeng, Y.-P. A1 - Jiang, D. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Gradient porous silicon nitride prepared via vacuum foaming and freeze drying N2 - Gradient porous silicon nitride (Si3N4) was fabricated by a novel vacuum foaming and freeze drying process. Aqueous Si3N4 slurries were foamed at vacuum pressure of 50–90 kPa, the green body was obtained by the freeze drying process, a gradient pore structure with porosities of 72–90% was achieved after pressureless sintering at 1680 °C. The porosity was increased with decreasing vacuum pressure. The pore structure consists of large pores (~100 μm) on top, medium pores (~45 μm) on the wall of the large pores, and small pores (~0.7 μm) in the matrix. Such gradient porous Si3N4 with macro- and micro-pores has potential application as high temperature filters. KW - Silicon nitride KW - Graded PY - 2015 U6 - https://doi.org/10.1016/j.matlet.2014.11.067 SN - 0167-577x SN - 1873-4979 VL - 141 SP - 138 EP - 140 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, H.-L. A1 - Zeng, Y.-P. A1 - Zuo, K.-H. A1 - Xia, Y. A1 - Yao, Dongxu A1 - Günster, Jens A1 - Heinrich, J. A1 - Li, S. T1 - Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon N2 - Porous Si3N4/SiC ceramics were prepared with Si and SiC as raw materials, Y2O3 as sintering additive and ZrO2 as nitrided catalyst through a rapid nitration process. The nitriding rate as a function of temperature and duration was investigated. The porous Si3N4/SiC ceramics with 8 wt% monoclinic ZrO2 addition that was nitrided at 1400 °C for 2 h exhibited the highest nitridation degree of 95%. The experimental results also demonstrated that the reciprocal formation of ZrO2 and ZrN can effectively enhance the level of nitridation by suppressing the melting of silicon in micro-regions. The effects of nitriding time on the mechanical properties of the specimens with ZrO2 as a catalyst was also studied. After nitrided at 1400 °C for various durations from 2 to 8 h, the porous Si3N4/SiC ceramics with the properties of a porosity over 39.8%, a flexural strength over 88.9 MPa and a linear shrinkage lower than 0.6% were achieved. The systematic investigation reveals the catalytic mechanism of ZrO2 in the synthesis of Si3N4/SiC ceramics. KW - Si3N4 PY - 2015 U6 - https://doi.org/10.1016/j.jeurceramsoc.2015.06.028 SN - 0955-2219 SN - 1873-619X VL - 35 IS - 14 SP - 3781 EP - 3787 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-34956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, H.-L. A1 - Zeng, Y.-P. A1 - Xia, Y. A1 - Yao, Dongxu A1 - Zuo, K.-H. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Rapid fabrication of porous Si3N4/SiC ceramics via nitridation of silicon powder with ZrO2 as catalyst N2 - Porous Si3N4/SiC ceramics were rapidly prepared with Y2O3 as sintering additive and ZrO2 as nitrided catalyst, using Si and SiC as starting powders. Porous Si3N4/SiC ceramics with 5 wt% ZrO2 addition showed a complete nitridation and good mechanical properties (with a high porosity of 34.96%, flexural strength of 150±4.2 MPa, linear shrinkage of 0.02%). It was revealed that the reciprocal formation of ZrO2 and ZrN effectively enhanced nitridation by inhibiting the melting of silicon in micro-regions. KW - D. ZrO2 KW - Rapid nitridation KW - Si3N4/SiC porous ceramics PY - 2014 U6 - https://doi.org/10.1016/j.ceramint.2013.11.098 SN - 0272-8842 SN - 1873-3956 VL - 40 IS - 5 SP - 7579 EP - 7582 PB - Ceramurgia CY - Faenza AN - OPUS4-30295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -