TY - JOUR A1 - Zorzi, G. A1 - Baeßler, Matthias A1 - Gabrieli, Fabio T1 - Influence of structural stiffness on ratcheting convection cells of granular soil under cyclic lateral loading N2 - In granular soils, long-term cyclically loaded structures can lead to an accumulation of irreversible strain by forming closed convective cells in the upper layer of the bedding. The size of the convective cell, its formation and grain migration inside this closed volume have been studied with reference to different stiffness of the embedded structure and different maximum force amplitudes applied at the head of the structure. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in a dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Furthermore, the ratcheting convective cell was also simulated with DEM with the aim of extracting some micromechanical information. The main results regarded the different development, shape and size of the convection cell and the surface settlements. T2 - 1st International Conference on the Material Point Method, MPM 2017 CY - Deltares, Delft, The Netherlands DA - 10.01.2017 KW - Particle image velocimetry KW - Cyclic loading KW - Discrete element method KW - Ratcheting convective cell PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-395711 SN - 1877-7058 IS - 175 SP - 148 EP - 156 PB - Elsevier AN - OPUS4-39571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -