TY - JOUR A1 - Hempel, M. A1 - Ziegler, Mathias A1 - Tomm, J.W. A1 - Elsaesser, T. A1 - Michel, N. A1 - Krakowski, M. T1 - Time-resolved analysis of catastrophic optical damage in 975 nm emitting diode lasers JF - Applied physics letters N2 - Catastrophic optical damage (COD) is analyzed during single current pulse excitation of 975 nm emitting diode lasers. Power transients and thermal images are monitored during each pulse. The COD process is unambiguously related to the occurrence of a “thermal flash” of Planck’s radiation. We observe COD to ignite multiple times in subsequent pulses. Thermography allows for tracing a spatial motion of the COD site on the front facet of the devices. The time constant of power decay after the onset of COD has values from 400 to 2000 ns, i.e., an order of magnitude longer than observed for shorter-wavelength devices. KW - Semiconductor laser KW - Thermography KW - Catastrophic optical damage KW - High-power diode lasers PY - 2010 DO - https://doi.org/10.1063/1.3456388 SN - 0003-6951 SN - 1077-3118 VL - 96 IS - 251105 SP - 1 EP - 3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hempel, M. A1 - Tomm, J.W. A1 - Ziegler, Mathias A1 - Elsaesser, T. A1 - Michel, N. A1 - Krakowski, M. T1 - Catastrophic optical damage at front and rear facets of diode lasers JF - Applied physics letters N2 - Single-pulse tests of the catastrophic optical damage (COD) are performed for three batches of diode lasers with different gain-regions. The tests involve in situ inspection of front, rear, and side of the devices by a thermocamera. Devices with an Al-containing gain-region show COD at the front facet, as expected for strong facet heating via surface recombination and reabsorption of laser light. In contrast, Al-free devices with low surface recombination rates tend to fail at the rear facet, pointing to a different heating scenario. The high carrier density at the rear facet favors heating and COD via Auger recombination processes. KW - Thermography KW - Catastrophic optical damage KW - High power diode lasers KW - Destructive testing KW - Non-destructive testing KW - Auger effect KW - Carrier density KW - Heating KW - Laser beam effects KW - Optical testing KW - Semiconductor lasers KW - Surface recombination PY - 2010 DO - https://doi.org/10.1063/1.3524235 SN - 0003-6951 SN - 1077-3118 VL - 97 IS - 23 SP - 231101-1 - 231101-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-22763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Hempel, M. A1 - Larsen, H. E. A1 - Tomm, J. W. A1 - Andersen, P. E. A1 - Clausen, S. A1 - Elliott, S. N. A1 - Elsaesser, T. T1 - Physical limits of semiconductor laser operation: A time-resolved analysis of catastrophic optical damage JF - Applied physics letters N2 - The early stages of catastrophic optical damage (COD) in 808 nm emitting diode lasers are mapped by simultaneously monitoring the optical emission with a 1 ns time resolution and deriving the device temperature from thermal images. COD occurs in highly localized damage regions on a 30 to 400 ns time scale which is determined by the accumulation of excess energy absorbed from the optical output. We identify regimes in which COD is avoided by the proper choice of operation parameters. KW - Semiconductor laser KW - Thermography KW - Catastrophic optical damage KW - High-power diode lasers PY - 2010 DO - https://doi.org/10.1063/1.3463039 SN - 0003-6951 SN - 1077-3118 VL - 97 IS - 021110 SP - 1 EP - 3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pagano, R. A1 - Ziegler, Mathias A1 - Tomm, J.W. A1 - Esquivias, I. A1 - Tijero, J.M.G. A1 - O'Callaghan, J.R. A1 - Michel, N. A1 - Krakowski, M. A1 - Corbett, B. T1 - Two-dimensional carrier density distribution inside a high power tapered laser diode JF - Applied physics letters N2 - The spontaneous emission of a GaAs-based tapered laser diode emitting at λ = 1060 nm was measured through a window in the transparent substrate in order to study the carrier density distribution inside the device. It is shown that the tapered geometry is responsible for nonuniform amplification of the spontaneous/stimulated emission which in turn influences the spatial distribution of the carriers starting from below threshold. The carrier density does not clamp at the lasing threshold and above it the device shows lateral spatial hole-burning caused by high stimulated emission along the cavity center. KW - Carrier density KW - Gallium arsenide KW - III-V semiconductors KW - Indium compounds KW - Laser cavity resonators KW - Optical hole burning KW - Quantum well lasers KW - Stimulated emission KW - Superradiance PY - 2011 DO - https://doi.org/10.1063/1.3596445 SN - 0003-6951 SN - 1077-3118 VL - 98 SP - 221110-1 EP - 221110-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-23873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tomm, J.W. A1 - Ziegler, Mathias A1 - Hempel, M. A1 - Elsaesser, T. T1 - Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers JF - Laser & photonics reviews N2 - COD diagram determined for a batch of broad-area AlGaAs diode lasers. The time to COD within a single current pulse is plotted versus the actual average optical power in the moment when the COD takes place. Full circles stand for clearly identified COD events (right ordinate), whereas open circles (left ordinate) represent the pulse duration in experiments, where no COD has been detected. A borderline (gray) exists between two regions, i. e., parameter sets, of presence (orange) and absence of COD (blue). This borderline is somewhat blurred because of the randomness in filamentation of the laser nearfield and scatter in properties of the involved individual devices. KW - Semiconductor laser KW - Thermography KW - Catastrophic optical damage KW - High-power diode lasers KW - Destructive testing KW - Non-destructive testing PY - 2011 DO - https://doi.org/10.1002/lpor.201000023 SN - 1863-8880 VL - 5 IS - 3 SP - 422 EP - 441 PB - Wiley-VCH CY - Weinheim AN - OPUS4-23624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlichting, Joachim A1 - Ziegler, Mathias A1 - Dey, Anika A1 - Maierhofer, Christiane A1 - Kreutzbruck, Marc T1 - Efficient data evaluation for thermographic crack detection JF - QIRT Journal N2 - We present an all-purpose crack detection algorithm for flying spot thermography which is directly applicable to a thermogram sequence without the need of any additional information about the experimental setup. A single image containing distinct crack signatures is derived in two steps. Firstly, the spatial derivative is calculated for each frame of the sequence and, secondly, the resulting data set is sorted pixel wise along the time axis. The feasibility of the proposed procedure is proven by testing a piece of rail that comprises roll contact fatigue cracks and by comparing the results with magnetic particle testing. KW - Active thermography KW - Laser scanner KW - Railway KW - Roll contact fatigue KW - Open surface cracks PY - 2011 SN - 1768-6733 VL - 8 IS - 1 SP - 119 EP - 123 PB - Lavoisier CY - Cachan Cedex AN - OPUS4-24255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Röllig, Mathias A1 - Steinfurth, Henrik A1 - Ziegler, Mathias A1 - Kreutzbruck, Marc A1 - Scheuerlein, C. A1 - Heck, S. T1 - Non-destructive testing of Cu solder connections using active thermography JF - NDT & E international N2 - Impulse and lock-in thermography have been applied to detect delaminations of prototype solder joints, similar to those to be produced between Cu shunts and Cu busbar stabilisers at the Large Hadron Collider (LHC) at CERN. Two infrared cameras with different detector materials and with different spectral ranges and two excitation techniques have been tested and compared for their ability to detect delaminations behind 2 and 3 mm thick Cu shunts. We have analyzed the signal to noise ratio (SNR) for each detected defect and are able to detect defects down to a nominal edge length of 4 mm behind 2 mm thick Cu shunts by using fast impulse thermography and a camera with a microbolometer array. For the 3 mm thick Cu shunt, on the other hand, the nominal 4 mm defect is only visible in the lock-in thermography phase images and the highest SNR has been achieved with a cooled InSb-based camera. In addition, numerical simulations show the influence of the minimum detectable defect size on the shunt thickness and that the developed on-site testing technique is sufficient to find all defects that are detectable theoretically. KW - Active thermography KW - Solder joint KW - Copper KW - FFT KW - Signal-to-noise-ratio PY - 2012 DO - https://doi.org/10.1016/j.ndteint.2012.07.010 SN - 0963-8695 VL - 52 SP - 103 EP - 111 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-27575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hempel, M. A1 - Ziegler, Mathias A1 - Schwirzke-Schaaf, S. A1 - Tomm, J.W. A1 - Jankowski, D. A1 - Schröder, D. T1 - Spectroscopic analysis of packaging concepts for high-power diode laser bars JF - Applied physics A N2 - Double-side cooled high-power diode laser bars packaged by different techniques on different types of passive heat sinks are analyzed in terms of packaging-induced strain. Reference data from standard devices being single-side cooled only and packaged by conventional soft and hard soldering are also presented. Thermal profiling across the devices complements the results. The most suitable packaging architecture and technique for double-side cooled bars is identified. Measurements of the laser emission near field and electroluminescence pattern provide direct reference to the functionality of the devices. Furthermore, a type of cross calibration of the methods used for strain analysis is made, since all techniques are applied to the same set of bars. This involves micro photoluminescence, micro Raman, and degree-of-polarization electroluminescence spectroscopy. KW - Spectroscopy KW - Semiconductor laser KW - Thermography KW - High-power diode lasers KW - Non-destructive testing PY - 2012 DO - https://doi.org/10.1007/s00339-012-6799-4 SN - 0947-8396 VL - 107 IS - 2 SP - 371 EP - 377 PB - Springer CY - Berlin AN - OPUS4-25789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Laser-projected photothermal thermography using thermal wave field interference for subsurface defect characterization JF - Applied Physics Letters N2 - The coherent superposition of two anti-phased thermal wave fields creates a zone of destructive interference which is extremely sensitive to the presence of defects without any reference measurements. Combining a high power laser with a spatial light modulator allows modulating phase and amplitude of an illuminated surface that induces spatially and temporally controlled thermal wave fields. The position and depth of defects are reconstructed from analysis of the Amplitude and Phase of the resulting photothermal signal. The proposed concept is experimentally validated and supported by numerical modeling. KW - Thermal waves KW - Active thermography KW - DMD KW - Spatial light modulator KW - Subsurface defects PY - 2016 UR - http://scitation.aip.org/search?value1=laser+projected+photothermal&option1=all&option912=resultCategory&value912=ResearchPublicationContent&operator8=AND&option8=pub_serialIdent&value8=aip%2Fjournal%2Fapl&qs=true DO - https://doi.org/10.1063/1.4963139 SN - 0003-6951 VL - 109 IS - 12 SP - 123504-1 EP - 123504-4 PB - AIP Publishing CY - Melville, New York AN - OPUS4-37590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jonietz, Florian A1 - Myrach, Philipp A1 - Suwala, H. A1 - Ziegler, Mathias T1 - Examination of Spot Welded Joints with Active Thermography JF - Journal of Nondestructive Evaluation N2 - The method described here allows to determine the size of the thermal contact between two metal sheets joined by spot welding. This size is a measure for the size of the weld nugget, i.e. the zone melted during the welding process, and thus the quality of the welded joint. The method applies active thermography in transmission or reflection setup. Especially the reflection setup offers an attractive possibility for non-destructive testing when components can be accessed from one side only. The spot weld region is optically heated by laser or flash light radiation. The weld nugget provides the mechanical joint, but also constitutes a thermal bridge between the two welded sheets. The latter will be exploited in this method. The better thermal contact at the weld Nugget contrasts with the surrounding material, where the heat transfer between the two sheets is comparatively low. A major advantage of the described method is the applicability on sheets without any surface treatment. This is achieved by a proper normalization of the data, allowing for a correction of the varying surface emissivity. KW - Active thermography KW - Spot weld KW - Automotive industry PY - 2016 UR - http://link.springer.com/article/10.1007/s10921-015-0318-4?wt_mc=internal.event.1.SEM.ArticleAuthorIncrementalIssue DO - https://doi.org/10.1007/s10921-015-0318-4 VL - 35:1 SP - 1 EP - 14 PB - Springer CY - New York AN - OPUS4-35480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -