TY - JOUR A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Nondestructive thermographic detection of internal defects using pixel-pattern based laser excitation and photothermal super resolution reconstruction JF - Scientific Reports N2 - In this work, we present a novel approach to photothermal super resolution based thermographic resolution of internal defects using two-dimensional pixel pattern-based active photothermal laser heating in conjunction with subsequent numerical reconstruction to achieve a high-resolution reconstruction of internal defect structures. With the proposed adoption of pixelated patterns generated using laser coupled high-power DLP projector technology the complexity for achieving true two-dimensional super resolution can be dramatically reduced taking a crucial step forward towards widespread practical viability. Furthermore, based on the latest developments in high-power DLP projectors, we present their first application for structured pulsed thermographic inspection of macroscopic metal samples. In addition, a forward solution to the underlying inverse problem is proposed along with an appropriate heuristic to find the regularization parameters necessary for the numerical inversion in a laboratory setting. This allows the generation of synthetic measurement data, opening the door for the application of machine learning based methods for future improvements towards full automation of the method. Finally, the proposed method is experimentally validated and shown to outperform several established conventional thermographic testing techniques while conservatively improving the required measurement times by a factor of 8 compared to currently available photothermal super resolution techniques. KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570551 DO - https://doi.org/10.1038/s41598-023-30494-2 SN - 2045-2322 VL - 13 SP - 1 EP - 13 PB - Nature Research AN - OPUS4-57055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Influence of the number of measurements on detecting internal defects using photothermal super resolution reconstruction with random pixel patterns JF - Quantitative Infrared Thermography Journal N2 - In this work, the limits of using spatially structured heating combined with subsequent photothermal super resolution reconstruction for the thermographic detection and resolution of internal defects are investigated. The approach is based on the application of modern high-power laser projector technology, which is used to repeatedly project varying spatially structured 2D pixel patterns to photothermally heat the object under test. After processing the generated thermographic data using nonlinear convex optimisation in conjunction with exploiting the joint-sparse nature of the defect signals within the individual measurements, a high-resolution 2D-sparse defect/inhomogeneity map is obtained. The main focus of the investigation is set on the influence of the number of individual measurements on the achievable reconstruction quality. Using numerical simulations based on an analytical representation of the forward solution to the underlying inverse problem, the convergence rate over performed measurements of the achievable reconstruction quality is determined. Finally, all findings are experimentally validated by reconstructing a set of internal defects in an additively manufactured sample. In this work, it is shown that for a variety of different defect separation distances, the projection of 50 different pixel patterns allows for a good trade-off between experimental complexity and reconstruction quality. KW - Super resolution KW - Digital micromirror device KW - Digital light processing KW - Internal defects PY - 2023 DO - https://doi.org/10.1080/17686733.2023.2223392 SN - 2116-7176 SP - 1 EP - 11 PB - Taylor & Francis AN - OPUS4-57778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -