TY - JOUR A1 - Hempel, M. A1 - Ziegler, Mathias A1 - Tomm, J.W. A1 - Elsaesser, T. A1 - Michel, N. A1 - Krakowski, M. T1 - Time-resolved analysis of catastrophic optical damage in 975 nm emitting diode lasers N2 - Catastrophic optical damage (COD) is analyzed during single current pulse excitation of 975 nm emitting diode lasers. Power transients and thermal images are monitored during each pulse. The COD process is unambiguously related to the occurrence of a “thermal flash” of Planck’s radiation. We observe COD to ignite multiple times in subsequent pulses. Thermography allows for tracing a spatial motion of the COD site on the front facet of the devices. The time constant of power decay after the onset of COD has values from 400 to 2000 ns, i.e., an order of magnitude longer than observed for shorter-wavelength devices. KW - Semiconductor laser KW - Thermography KW - Catastrophic optical damage KW - High-power diode lasers PY - 2010 U6 - https://doi.org/10.1063/1.3456388 SN - 0003-6951 SN - 1077-3118 VL - 96 IS - 251105 SP - 1 EP - 3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hempel, M. A1 - Tomm, J.W. A1 - Ziegler, Mathias A1 - Elsaesser, T. A1 - Michel, N. A1 - Krakowski, M. T1 - Catastrophic optical damage at front and rear facets of diode lasers N2 - Single-pulse tests of the catastrophic optical damage (COD) are performed for three batches of diode lasers with different gain-regions. The tests involve in situ inspection of front, rear, and side of the devices by a thermocamera. Devices with an Al-containing gain-region show COD at the front facet, as expected for strong facet heating via surface recombination and reabsorption of laser light. In contrast, Al-free devices with low surface recombination rates tend to fail at the rear facet, pointing to a different heating scenario. The high carrier density at the rear facet favors heating and COD via Auger recombination processes. KW - Thermography KW - Catastrophic optical damage KW - High power diode lasers KW - Destructive testing KW - Non-destructive testing KW - Auger effect KW - Carrier density KW - Heating KW - Laser beam effects KW - Optical testing KW - Semiconductor lasers KW - Surface recombination PY - 2010 U6 - https://doi.org/10.1063/1.3524235 SN - 0003-6951 SN - 1077-3118 VL - 97 IS - 23 SP - 231101-1 - 231101-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-22763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -