TY - JOUR A1 - Zhang, Q. A1 - Zheng, M. A1 - Huang, Y. A1 - Kunte, Hans-Jörg A1 - Wang, X. A1 - Liu, Y. A1 - Zheng, C. T1 - Long term corrosion estimation of carbon steel, titanium and its alloy in backfill material of compacted bentonite for nuclear waste repository N2 - The container of high-level radioactive waste (HLRW) being in deep geological disposal, the backfill material is needed to serve as the second defense for HLRW and the highly compacted bentonite is generally selected. As the time goes, the underground water will infiltrate the backfill, causing the corrosion of materials for the building of containers in the formed electrolyte. Carbon steel, titanium and its alloy are the potential candidate materials for the fabrication of HLRW containers. The current investigation aims at assessing the safety of HLRW container in deep geological disposal for hundreds of thousands of years and facilitating the material selection for future Container fabrication by estimating their corrosion behavior in compacted bentonite with a series of moisture content at different temperatures through electrochemical methods including open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PC) measurements. The corrosion rates were estimated for a carbon steel, a pure titanium and a titanium alloy in compacted Gaomiaozi Bentonite infiltrated with simulated underground water in Beishan area of China over an expected disposal period up to 106 years respectively, showing that titanium and its alloy are more reliable materials for building HLRW containers than carbon steel. KW - Issues KW - Disposal KW - Performance KW - Moisture KW - Lifetime KW - Water KW - Model PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492413 DO - https://doi.org/10.1038/s41598-019-39751-9 SN - 2045-2322 VL - 9 SP - 3195 PB - Nature Publishing Group AN - OPUS4-49241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mikaelyan, A. A1 - Thompson, C. L. A1 - Meuser, K. A1 - Zheng, H. A1 - Rani, P. A1 - Plarre, Rüdiger A1 - Brune, A. T1 - High-resolution phylogenetic analysis of Endomicrobia reveals multiple acquisitions of endosymbiotic lineages by termite gut flagellates N2 - Bacteria of the class Endomicrobia form a deepbranching clade in the Elusimicrobia phylum. They are found almost exclusively in the intestinal tract of animals and are particularly abundant in many termites, where they reside as intracellular symbionts in the cellulolytic gut flagellates. Although small populations of putatively free-living lineages have been detected in faunated and flagellate-free hosts, the evolutionary origin of the endosymbionts is obscured by the limited amount of phylogenetic information provided by the 16S rRNA gene fragment amplified with Endomicrobia-specific primers. Here, we present a robust phylogenetic framework based on the nearfull-length 16S–23S rRNA gene region of a diverse set of Endomicrobia from termites and cockroaches, which also allowed us to classify the shorter reads from previous studies. Our data revealed that endosymbionts arose independently at least four times from different free-living lineages, which were already present in ancestral cockroaches but became associated with their respective hosts long after the digestive symbiosis between termites and flagellates had been established. Pyrotag sequencing revealed that the proportion of putatively free-living lineages increased, when all flagellates and their symbionts were removed from the gut of lower termites by starvation, starch feeding or hyperbaric oxygen, but results varied between different methods. KW - Endosymbionts KW - Evolution KW - Termites PY - 2017 DO - https://doi.org/10.1111/1758-2229.12565 VL - 9 IS - 5 SP - 477 EP - 483 AN - OPUS4-42707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthélémy, H. A1 - Agnoletti, A. A1 - Bortot, P. A1 - Mair, Georg A1 - Zheng, J. T1 - Storage N2 - The whole conference focused on gaps in research concerning hydrogen and hydrogen safety. This presentation focus on storage aspects and shows the current gaps in research from the point of view of the authors. They have differences in background, from university via manufacturer and safety institute to hydrogen operating industry. The different purposes of storage are covered (onboard storage, stationary storage and transport of gases) as well as the different designs (steel to pure composite/plastic). T2 - "Research Priorities Workshop RPW 2018" (EC & US DOE) CY - Buxton, UK DA - 18.09.2018 KW - Strength degradation KW - Initial testing KW - Knowledge gaps PY - 2018 AN - OPUS4-46159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, Y.-L. A1 - Zheng, A1 - Zhang, A1 - Lu, A1 - Wang, A1 - Kunte, Hans-Jörg A1 - Sand, W. T1 - Forecast on Long Term Chemical Environment Evolution on Surface of Nuclear Waste Container N2 - Surface environment changes of nuclear waste container, mainly including oxygen contents, buffer pore water components and pH under the conditions of “borehole” type and “In-floor” type with bentonite buffer/backfill and concrete buffer were summarized. This summarization provides a basic corrosion environment reference for the corrosion evolution re- search of high-level radioactive waste disposal repository in our country. KW - Corrosion evolution KW - Nuclear waste KW - Disposal repository KW - Corrosion environment PY - 2018 DO - https://doi.org/10.7643/ issn.1672-9242.2018.10.017 SN - 1672-9242 VL - 15 IS - 10 SP - 103 EP - 108 PB - Zhongguo Bingqi Gongye di-wujiu Yanjiusuo CY - Chongqing AN - OPUS4-46952 LA - zho AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, A1 - Zheng, A1 - Zhang, A1 - Lu, A1 - Wang, A1 - Kunte, Hans-Jörg A1 - Sand, W. T1 - Long Term Temperature and Humidity Evolution Forecast in Near Field of Nuclear Waste Container N2 - The paper aims to simulate the corrosion environment of nuclear waste containers at different geological disposal periods to obtain temperature and humidity information at the interface between the container and the surrounding environment. The simulated data and calculation results of long term temperature evolution at the surface of nuclear waste (HLW) containers from some typical nuclear countries about the safety disposition were reviewed. Combining different burial patterns, this paper speculated the long term temperature evolution rule for China. According to the study about saturation variation of buffer/backfill material at home and abroad, the humidity evolution of bentonite at the surface of HLW containers was specu- lated. The study showed that the temperature of the container surface increased rapidly at the beginning, and gradually decreased after the climax. For safety reasons, the maximum temperature was designed below 100°C. The saturation of bentonite was af- fected by the mutual influences of the heat released by nuclear waste decay and the infiltration of groundwater. It was dominated by the released heat in the early stage, and later was influenced greatly by the infiltration of groundwater. It is generally believed that the water content at the surface of the container will increase obviously in about 3 years, and will be saturated in about 10 years. The prediction of long-term temperature and humidity evolution will lay a foundation for study of corrosion evolution of nuclear waste containers in China. KW - Corrosion evolution KW - Nuclear waste KW - Disposal repository KW - Temperature and humidity PY - 2018 SN - 1672-9242 VL - 15 IS - 10 SP - 109 EP - 113 PB - Zhongguo Bingqi Gongye di-wujiu Yanjiusuo CY - Chongqing AN - OPUS4-46953 LA - zho AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zheng, H. A1 - Ertel, Jens-Peter A1 - Kourmpetis, M. A1 - Kanfoud, J. A1 - Niederleithinger, Ernst A1 - Gan, T.-H. T1 - Integrity testing of cast in situ concrete piles based on an impulse response function method using sine‑sweep excitation by a shaker N2 - In this study, an Impulse Response Function analysis of pile response to sine-sweep excitation by a low cost, portable Shaker was used to identify defects in piles. In straightforward impact-echo methods, echoes from the pile toe and defects are visible in the time domain measurements. However, these echoes are not present in the time domain records of piles subjected to sine-sweep excitations, due to interactions between the input and output signals. For this reason, the impulse response function in the time domain has been calculated and is able to identify the echoes from pile impedance changes. The proposed methodology has been evaluated both numerically and experimentally. A one-dimensional pile-soil interaction system was developed, and a finite difference method used to calculate the pile response to sine-sweep excitation. The numerical simulations indicate that impulse response measurements with a synthesized logarithmic, sine-sweep excitation could be an effective tool for detecting defects in piles. The methodology was further tested with field trials on 6 cast in situ concrete test piles including 1 intact pile and 5 defective piles subjected to sine-sweep excitations by a shaker. In 5 of the 6 cases the echoes from the pile toe could be identified in the deconvoluted waveforms—the impulse Response functions. Damage detection is more difficult and dependent on the selection of the optimal regularization parameter. Further research and optimization of the deconvolution process is needed to evaluate the effectiveness compared to standard pile integrity testing methods. KW - Pile testing KW - Shaker KW - Deconvolution PY - 2019 DO - https://doi.org/10.1007/s10921-019-0595-4 SN - 0195-9298 SN - 1573-4862 VL - 38 IS - 2 SP - 55, 1 EP - 18 PB - Springer CY - Cham, Switzerland AN - OPUS4-48185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, K. A1 - Liu, H. A1 - Kraft, Marco A1 - Shikha, S. A1 - Zheng, X. A1 - Agren, H. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhang, Y. T1 - A protected excitation-energy reservoir for efficient upconversion luminescence N2 - Lanthanide-doped upconversion nanoparticles (UCNPs) are of great interest for biomedical applications. Currently, the applicability of UCNP bionanotechnology is hampered by the generally low luminescence intensity of UCNPs and inefficient energy Transfer from UCNPs to surface-bound chromophores used e.g. for photodynamic therapy or analyte sensing. In this work, we address the low-Efficiency issue by developing versatile core-Shell nanostructures, where high-concentration sensitizers and activators are confined in the core and Shell Region of representative hexagonal NaYF2:Yb,Er UCNPs. After Doping concentration optimization, the sensitizer-rich core is able to harvest/accumulate more excitation energy and generate almost one order of Magnitude higher luminescence intesity than conventional homogeneously doped nanostructures. At the same time, the activator Ions located in the Shell enable a ~6 times more efficient resonant energy Transfer from UCNPs to surface-bound acceptor dye molecules due to the short distance between donor-acceptor pairs. Our work provides new insights into the rational design of UCNPs and will greatly encrease the General applicability of upconversion nanotechnologies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method KW - Energy transfer KW - Shell KW - Particle architecture PY - 2017 DO - https://doi.org/10.1039/c7nr06900f SN - 2040-3372 SN - 2040-3364 VL - 10 IS - 1 SP - 250 EP - 259 PB - The Royal Society of Chemistry AN - OPUS4-43893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grulke, E. A. A1 - Yamamoto, K. A1 - Kumagai, K. A1 - Häusler, Ines A1 - Österle, Werner A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Brown, S. C. A1 - Chan, C. A1 - Zheng, J. A1 - Yamamoto, K. A1 - Yashiki, K. A1 - Song, N. W. A1 - Kim, Y. H. A1 - Stefaniak, A. B. A1 - Schwegler-Berry, D. A1 - Coleman, V. A. A1 - Jämting, Å. K. A1 - Herrmann, J. A1 - Arakawa, T. A1 - Burchett, W. W. A1 - Lambert, J. W. A1 - Stromberg, A. J. T1 - Size and shape distributions of primary crystallites in titania aggregates N2 - The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions were multi-modal but data visualization plots demonstrated that the Weibull distribution was preferred to the normal distribution. For the equivalent circular diameter size descriptor, measurement uncertainties of the lognormal distribution scale and width parameters were 9.5% and 22%, respectively. For the aspect ratio shape descriptor, the measurement uncertainties of the Weibull distribution scale and width parameters were 7.0% and 26%, respectively. Both measurement uncertainty estimates and data visualizations should be used to analyze size and shape distributions of particles on the nanoscale. KW - Measurement uncertainty KW - Size distribution KW - Shape distribution KW - TEM KW - Titania PY - 2017 DO - https://doi.org/10.1016/j.apt.2017.03.027 SN - 0921-8831 VL - 28 IS - 7 SP - 1647 EP - 1659 PB - Elsevier B.V. AN - OPUS4-40478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zheng, H. A1 - Kappatos, V. A1 - Niederleithinger, Ernst A1 - Ertel, Jens-Peter A1 - Grohmann, Maria A1 - Selcuk, C. A1 - Gan, T.-H. T1 - Defect detection in concrete pile using impulse response measurements with sine sweep excitations N2 - For pile integrity inspection, a low cost and portable shaker was used to create the sine sweep signal for pile excitation. The impulse response function, calculated by the deconvolution of pile response from the sine sweep excitation, was proposed to identify the echoes in the piles due to the pile’s impedance changes. The proposed methodology has been evaluated and validated both numerically and experimentally. Based on the results from the simulations and experiments, it was found that the impulse response measurement with sine sweep excitation could be an effective tool to detect the echoes of the pile toe and the defects in the pile. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Impulse response function KW - Sine sweep excitation KW - Pile integrity KW - Damage detection PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-347157 SN - 1435-4934 SP - 1 EP - 4 PB - Technische Universität Berlin / Bundesanstalt für Materialforschung und -prüfung AN - OPUS4-34715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikfalazar, M. A1 - Kohler, C. A1 - Heunisch, Andreas A1 - Wiens, A. A1 - Zheng, Y. A1 - Schulz, Bärbel A1 - Mikolajek, M. A1 - Sohrabi, M. A1 - Rabe, Torsten A1 - Binder, R. A1 - Jakoby, R. T1 - LTCC phase shifters based on tunable ferroelectric composite thick films N2 - This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors. KW - Ferroelectric KW - LTCC KW - Phase shifter KW - Fully printed component KW - BST PY - 2015 DO - https://doi.org/10.1515/freq-2015-0082 SN - 0016-1136 SN - 2191-6349 VL - 69 IS - 11-12 SP - 451 EP - 455 PB - De Gruyter CY - Berlin ; Boston, Mass. AN - OPUS4-34949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, F. A1 - Ren, H. A1 - Zheng, M. A1 - Shao, X. A1 - Dai, T. A1 - Wu, Y. A1 - Tian, L. A1 - Liu, Y. A1 - Liu, B. A1 - Günster, Jens A1 - Liu, Y. A1 - Liu, Y. T1 - Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects N2 - Bioactive glass ceramics have excellent biocompatibility and osteoconductivity; and can form direct chemical bonds with human bones; thus, these ceramic are considered as “Smart” materials. In this study, we develop a new type of bioactive glass ceramic (AP40mod) as a scaffold containing Endothelial progenitor cells (EPCs) and Mesenchymal stem cells (BMSCs) to repair critical-sized bone defects in rabbit mandibles. For in vitro experiments: AP40mod was prepared by Dgital light processing (DLP) system and the optimal ratio of EPCs/BMSCs was screened by analyzing cell proliferation and ALP activity, as well as the influence of genes related to osteogenesis and angiogenesis by direct inoculation into scaffolds. The scaffold showed suitable mechanical properties, with a Bending strength 52.7 MPa and a good biological activity. Additionally, when EPCs/BMSCs ratio were combined at a ratio of 2:1 with AP40mod, the ALP activity, osteogenesis and angiogenesis were significantly increased. For in vivo experiments: application of AP40mod/EPCs/BMSCs (after 7 days of in vitro spin culture) to repair and reconstruct critical-sized mandible defect in rabbit showed that all scaffolds were successfully accurately implanted into the defect area. As revealed by macroscopically and CT at the end of 9 months, defects in the AP40mod/EPCs/BMSCs group were nearly completely covered by normal bone and the degradation rate was 29.9% compared to 20.1% in the AP40mod group by the 3D reconstruction. As revealed by HE and Masson staining analyses, newly formed blood vessels, bone marrow and collagen maturity were significantly increased in the AP40mod/EPCs/BMSCs group compared to those in the AP40mod group. We directly inoculated cells on the novel material to screen for the best inoculation ratio. It is concluded that the AP40mod combination of EPCs/BMSCs is a promising approach for repairing and reconstructing large load bearing bone defect. KW - Three-dimensional Bone tissue engineering KW - Endothelial progenitor cell KW - Bone marrow-derived mesenchymal stem cell KW - Bioactive glass scaffold PY - 2020 DO - https://doi.org/10.1016/j.jmbbm.2019.103532 SN - 1751-6161 VL - 103 SP - 103532 EP - 103532 PB - Elsevier Ltd. AN - OPUS4-50491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xue, Boyang A1 - You, Yi A1 - Gornushkin, Igor B. A1 - Zheng, R. A1 - Riedel, Jens T1 - High-throughput underwater elemental analysis by μJ-laser-induced breakdown spectroscopy at kHz repetition rates: part I, ultrasound-enhanced optical emission spectroscopy towards application perspectives N2 - In recent years, laser-induced breakdown spectroscopy (LIBS) has gained significant attention as a means for simple elemental analyses. The suitability of LIBS for contactless analysis allows it to be a perfect candidate for underwater applications. While the majority of LIBS systems still rely upon sub-kHz pulsed lasers, this contribution introduces 10s-kHz low pulse-energy lasers into underwater LIBS to improve the throughput and statistical validity. Interestingly, the spectral component significantly changed above a critical laser repetition-rate threshold. Spectral lines of atomic hydrogen and oxygen stemming from water become visible beyond a ∼10 kHz repetition rate. This observation suggests a different plasma dynamic compared to low repetition rates. When the pulse-to-pulse interval becomes sufficiently short, a cumulative effect begins to be significant. Apparently, the new phenomena occur on a timescale corresponding to a threshold rate of ∼10 kHz, i.e. ∼100 μs. Analytically, the high repetition rates result in improved statistical validity and throughput. More plasma events per unit time allowed the use of low efficiency Echelle spectrometers without compromising on the analytical performance. Meanwhile, the presence of H I and O I out of the water (as the matrix) also offers internal standardization in underwater elemental analysis. Since the laser fluence was on the lower edge of the plasma threshold, an additional ultrasound source was introduced to induce external perturbation, which significantly improved the plasma formation stability. A huge advantage of LIBS is the possibility of detecting almost all elements within a sample simultaneously. Throughout the periodic table, chlorine is one of the most challenging elements. Consequently, Ca2+ and Na+ were used as samples to demonstrate the capability of this high repetition-rate LIBS platform. As an ambitious benchmark for our system, chlorine detection in water was also discussed. KW - High repetition rate KW - Laser-induced breakdown spectroscopy PY - 2020 DO - https://doi.org/10.1039/D0JA00290A VL - 35 IS - 12 SP - 2901 EP - 2911 PB - The Royal Society of Chemistry AN - OPUS4-51564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zheng, Y. A1 - Zhang, S. A1 - Ma, J. A1 - Sun, F. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Manke, I. A1 - Hu, Z. A1 - Cui, G. T1 - Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: mediated by uneven ion flux N2 - An in-depth understanding of the degradation mechanisms is a prerequisite for developing the nextgeneration all solid-state lithium metal battery (ASSLMB) technology. Herein, synchrotron X-ray computed tomography (SXCT) together with other probing tools and simulation method were employed to rediscover the decaying mechanisms of LiNi0.8Co0.1Mn0.1O2 (NCM)|Li6PS5Cl (LPSCl)|Li ASSLMB. It reveals that the detachment and isolation of NCM particles cause the current focusing on the remaining active regions of cathode. The extent of Li stripping and the likelihood of Li+ plating into LPSCl facing the active NCM particles becomes higher. Besides, the homogeneity of Li stripping/plating is improved by homogenizing the electrochemical reactions at the cathode side by LiZr2(PO4)3 (LZP) coating. These results suggest a codependent failure mechanism between cathode and anode that is mediated by uneven Li ion flux. This work contributes to establish a holistic understanding of the degradation mechanisms in ASSLMBs and opens new opportunities for their further optimization and evelopment. KW - Current density distribution KW - Lithium ion flux KW - Solid-state lithium metal batteries KW - Codependent failure mechanism KW - Cathode deactivation PY - 2023 DO - https://doi.org/10.1016/j.scib.2023.03.021 SN - 2095-9273 VL - 68 IS - 8 SP - 813 EP - 825 PB - Elsevier B.V. AN - OPUS4-57309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monavari, Mahshid A1 - Homaeigohar, Shahin A1 - Medhekar, Rucha A1 - Nawaz, Qaisar A1 - Monavari, Mehran A1 - Zheng, Kai A1 - Boccaccini, Aldo R. T1 - A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde–Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles N2 - In this study, a wound dressing composed of an alginate dialdehyde−gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles sti.ened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more e.ective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing. KW - General Materials Science PY - 2023 DO - https://doi.org/10.1021/acsami.2c23252 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-58548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Ngai, S. A1 - Zhou, X. Y. A1 - Zaiser, E. A1 - Manzoni, Anna Maria A1 - Wu, Y. A1 - Zheng, W. W. A1 - Zhang, P. A1 - Thompson, G. B. T1 - Tracking maze-like hierarchical phase separation behavior in a Fe-Si-V alloy N2 - Optimizing the properties of next-generation high-temperature and corrosion-resistant alloys is rooted in balancing structure-property relationships and phase chemistry. Here, we implement a complementary approach based on transmission electron microscopy (TEM) and atom probe tomography (APT) to ascertain aspects of hierarchical phase separation behavior, by understanding the microstructural evolution and the three-dimensional (3D) nanochemistry of a single crystal Fe79.5Si15.5V5.0 (at%) alloy. A maze-like hierarchical microstructure forms, in which a complex network of metastable disordered α plates (A2 phase) emerges within ordered α1 precipitates (D03 phase). The supersaturation in α1 (D03) precipitates with Fe and V drives the formation of α (A2) plates. The morphology of α (A2) plates is discussed concerning crystal structure, lattice misfit, and elastic strain. Phase compositions and a ternary phase diagram aid the thermodynamic assessment of the hierarchical phase separation mechanism via the Gibbs energy of mixing. A perspective on the stabilization of hierarchical microstructures beyond Fe79.5Si15.5V5.0 is elaborated by comparing hierarchical alloys. We find that the ratio of elastic anisotropy (Zener ratio) serves as a predictor of the hierarchical particles’ morphology. We suggest that the strengthening effect of hierarchical microstructures can be harnessed by improving the temporal and thermal stability of hierarchical particles. This can be achieved through phase-targeted alloying aiming at the hierarchical particles phase by considering the constituents partitioning behavior. Beyond Fe79.5Si15.5V5.0, our results demonstrate a potential pathway for improving the properties of high-temperature structural materials. KW - Atom probe tomography KW - Transmission electron microscopy KW - Hierarchical microstructure KW - Phase separation PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2023.172157 SN - 0925-8388 VL - 968 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-58343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -