TY - CONF A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Malow, Marcus A1 - Bruno, Giovanni T1 - 3D characterisation of ammonium nitrate powders by X-ray computed tomography N2 - The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually called ANFO, is extensively used in the mining industry as a bulk industrial explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the porosity of the AN prills. Standardised tests routinely used to assess oil retention face several important limitations; the first being the difficulty to cover the wide range of porosity contents and morphologies from different types of ammonium nitrate prills; the second being the inability to evaluate the closed porosity, which is an important factor regarding the sensitivity of the explosive to detonation. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. XCT can therefore be employed to non-destructively and accurately evaluate and characterise porosity in ammonium nitrate prills. T2 - 23rd Seminar on New Trends in Research of Energetic Materials CY - Meeting was canceled DA - 01.04.2020 KW - Ammonium nitrate KW - Prill KW - Non-destructive characterisation KW - Porosity KW - Specific surface area PY - 2020 SP - 163 EP - 171 AN - OPUS4-51272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Structural and Morphological Quantitative 3D Characterisation of Ammonium Nitrate Prills by X-ray Computed Tomography N2 - The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency. KW - ANFO KW - Explosives KW - Surface area KW - Porosity KW - XCT KW - Data processing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505395 VL - 13 IS - 5 (Special Issue "Micro Non-Destructive Testing and Evaluation") SP - 1230 PB - MDPI AN - OPUS4-50539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Morphological characterisation of explosive powders by XCT: When grain numbers count N2 - Ammonium nitrate (AN) prills are commonly used as an ingredient in industrial explosives and in fertilisers. Conventional techniques (such as BET or mercury intrusion porosimetry) can measure the open porosity and specific surface area of AN prill, but the closed porosity is not obtainable. This work was focused on evaluating X-ray computed tomography (XCT) as a non-destructive technique for the assessment of porosity in AN prills. An advanced data processing workflow was developed so that the segmentation and quantification of the CT data could be performed on the entire 3D volume, yet allowing the measurements (e.g.; volume, area, shape factor…) to be extracted for each individual phase (prill, open porosity, closed porosity) of each individual prill, in order to obtain statistically relevant data. Clear morphological and structural differences were seen and quantified between fertiliser and explosive products. Overall, CT can provide a very wide range of parameters that are not accessible to other techniques, destructive or non-destructive, and thus offers new insights and complementary information. T2 - 10th Conference on Industrial Computed Tomography (iCT 2020) CY - Wels, Austria DA - 04.02.2020 KW - Ammonium nitrate KW - Prill KW - Non-destructive characterisation KW - Porosity KW - Specific surface area PY - 2020 UR - http://www.ndt.net/?id=25118 SN - 1435-4934 VL - 25 IS - 2 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-50348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -