TY - JOUR A1 - Kim, K.J. A1 - Kim, J.W. A1 - Moon, D.W. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Gross, Thomas A1 - Unger, Wolfgang A1 - Jordaan, W. A1 - Staden, M.v. A1 - Prins, S. A1 - Wang, H. A1 - Song, X. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Kojima, I. T1 - Final report on key comparison K67 and parallel pilot study P108: measurement of composition of a thin Fe-Ni alloy film N2 - The Key Comparison K67 and the parallel Pilot Study P108 on quantitative analysis of thin alloy films have been completed in the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of these inter-laboratory comparisons is to determine the degree of equivalence in the measurement capability of national metrology institutes (NMIs) and designated institutes (DIs) for the determination of the composition of thin alloy films. The measurand is expressed in atomic percent. A Fe-Ni alloy film with a certified composition was available for the participants of the inter-laboratory comparison. It has been used as a reference specimen to determine the relative sensitivity factors (RSF) of Fe and Ni for the different analytical methods used by the participants to determine the composition of the test sample. As was shown in the preceding Pilot Study P98, the degrees of equivalence in the measurement capabilities of the participants can be improved in that way. The composition of the reference specimen was certified by inductively coupled plasma mass spectrometry (ICP-MS) using the isotope dilution method. The in-depth and lateral homogeneity, determined in terms of elemental composition, of the certified reference sample and the unknown test sample were confirmed by secondary ion mass spectrometry (SIMS) using C60 primary ions by the leading laboratory. Five laboratories participated in the key comparison. Four of them used x-ray photoelectron spectroscopy (XPS) and one Auger electron spectroscopy (AES). One laboratory participated in the parallel P108 pilot study using electron probe micro analysis with an energy-dispersive spectrometer (ED EPMA) and XPS. KW - XPS KW - AES KW - EDX KW - Fe-Ni alloy film KW - Key comparison KW - CCQM PY - 2010 U6 - https://doi.org/10.1088/0026-1394/47/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 47 IS - 1A SP - 08011-1 - 08011-15 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-21045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Unger, Wolfgang A1 - Kim, J.W. A1 - Moon, D.W. A1 - Gross, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Dieter A1 - Wirth, Thomas A1 - Jordaan, W. A1 - van Staden, M. A1 - Prins, S. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Song, X.P. A1 - Wang, H. T1 - Inter-laboratory comparison: quantitative surface analysis of thin Fe-Ni alloy films N2 - An international interlaboratory comparison of the measurement capabilities of four National Metrology Institutes (NMIs) and one Designated Institute (DI) in the determination of the chemical composition of thin Fe-Ni alloy films was conducted via a key comparison (K-67) of the Surface Analysis Working Group of the Consultative Committee for Amount of Substance. This comparison was made using XPS (four laboratories) and AES (one laboratory) measurements. The uncertainty budget of the measured chemical composition of a thin alloy film was dominated by the uncertainty of the certified composition of a reference specimen which had been determined by inductively coupled plasma mass spectrometry using the isotope dilution method. Pilot study P-98 showed that the quantification using relative sensitivity factors (RSFs) of Fe and Ni derived from an alloy reference sample results in much more accurate result in comparison to an approach using RSFs derived from pure Fe and Ni films. The individual expanded uncertainties of the participants in the K-67 comparison were found to be between 2.88 and 3.40 atomic %. The uncertainty of the key comparison reference value (KCRV) calculated from individual standard deviations and a coverage factor (k) of 2 was 1.23 atomic %. KW - Quantification KW - Fe-Ni alloy KW - Uncertainty KW - Key comparison KW - Traceability PY - 2012 U6 - https://doi.org/10.1002/sia.3795 SN - 0142-2421 SN - 1096-9918 VL - 44 IS - 2 SP - 192 EP - 199 PB - Wiley CY - Chichester AN - OPUS4-24505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -