TY - JOUR A1 - Wu, Z. A1 - Guo, X. A1 - Xie, G. A1 - Yan, T. A1 - Wu, Dejian A1 - Zhang, F. A1 - Ang, R. T1 - Heat and electric flux coupling of closed-loop thermoelectric generator N2 - Thermoelectric generator (TEG) has been proved as a promising technology for directly converting heat into electricity based on Seebeck effect. On the contrary, this electricity can trigger a solid-state cooling based on conventional Peltier effect. However, these two effects induce a coupling between heat and electric flux, especially for the quantitative relationship still remaining a mystery. Here, we show experimental evidence and theoretical calculation for the coupling by monitoring transient response of fluid temperature and output power. The experimental maximum heat flow in open circuit is 1162 W at cold fluid flow rate = 0.3 m3/h and fluid temperature difference ΔTf = 70 °C, enhanced by 13% owing to heat compensation from intrinsic coupling in closed-loop circuit. Meanwhile, the measured maximum output power of TEG is 18.2 W, and subsequently decreases to 15.4 W due to the objective existence of coupling. This double-edged sword in coupling vigorously inspires the potential applications in heat-dissipation situation such as spacecraft, electronic components, photovoltaic, refrigerator and etc. Present findings open a novel avenue for manipulating heat-electricity conversion in practical engineering. KW - Thermoelectric generator PY - 2021 U6 - https://doi.org/10.1016/j.enconman.2021.114529 SN - 0196-8904 VL - 244 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-53661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -