TY - CONF A1 - Zhang, K. A1 - Schmidt, Wolfram A1 - Mezhov, Alexander T1 - Influence of the hydroxypropylation of starch on its performance as viscosity modifying agent T2 - International Concrete Abstracts Portal N2 - Synopsis: Starch is a commonly used viscosity modifying agent (VMA). The performance of starch as VMA depends on its origin (e.g. potato, corn, cassava, etc.) and corresponding molecular properties, such as molecular weight, ratio between amylose and amylopectin etc. Depending upon the application, the efficiency of starch can be enhanced by hydroxypropylation. The maximum degree of substitution (DoS) cannot be greater than 3.0, which is the number of hydroxy groups per glucose monomer in the polymer. In the current research three potato starches exhibiting the DoS of 0.4, 0.6 and 0.8 were utilised. The influence of the modified starch on the rheological properties and hydration of cement paste, as well as the viscosity of the pore solution were investigated. Our findings show that the starch with the highest DoS increases the dynamic yield stress the most, while the plastic viscosity is less dependent on the DoS. Additionally, starch with the highest DoS retards hydration to lower degree than other starches. T2 - 13th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete CY - Milan, Italy DA - 10.07.2022 KW - Potato starch KW - Rheological KW - Cement hydration KW - Pore solutions PY - 2022 DO - https://doi.org/10.14359/51736074 VL - 354 SP - 209 EP - 218 PB - ACI Special Publications AN - OPUS4-58320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, K. A1 - Mezhov, Alexander A1 - Schmidt, Wolfram T1 - Effect of Polycarboxylate Superplasticizer in Ordinary Portland Cement and Sulfate Resistant Cement JF - Journal of Materials in Civil Engineering N2 - Polycarboxylate superplasticizers (PCE) are the most widely used admixtures in today’s cementitious construction materials. The molecular structure has a decisive influence on the effectiveness of PCE, which also can be tailored to serve in a different cementitious system. The current study investigates the influence of the backbone charge density of PCE on the rheology, hydration kinetics, and adsorption behavior of ordinary Portland cement (OPC) and sulfate-resistant cement (SRC). The results indicate that regardless of the PCE type, OPC requires a higher amount of PCE to be adsorbed to induce changing of rheological parameters and hydration kinetics. Regardless of the cement type, the PCE with a higher charge density exhibits higher adsorption behavior, corresponding to lower viscosity measurement. Compared to OPC, SRC is more sensitive to the introduction of both PCEs and has a lower saturation dosage, indicating that SRC generally provides better workability properties regardless of the PCE. KW - Polycarboxylate superplasticizers (PCE) KW - Sulfate resistant cement (SRC) KW - Rheological KW - Adsorption KW - Cement hydration PY - 2023 DO - https://doi.org/10.1061/JMCEE7.MTENG-15033 SN - 0899-1561 VL - 35 IS - 6 SP - 1 EP - 12 PB - ASCE Libary AN - OPUS4-58244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -