TY - JOUR
A1 - Yusenko, Kirill
A1 - Petrushina, M.
A1 - Dedova, E.
A1 - Portnaygin, A.
A1 - Papynov, E.
A1 - Filatov, E.
A1 - Gubanov, A.
T1 - Pressure induced change in the ZrWMoO8
N2 - In this paper we report high-pressure synchrotron x-ray powder diffraction data for the cubic ZrWMoO8. For the first time, extensive structural study of ZrWMoO8 solid solution as a function of pressure was performed. This study shows that disordered cubic-ZrWMoO8 (space group Pa) transforms to ordered cubic-ZrWMoO8 (space group P) at low pressure. A further high-pressure influence leads followed by amorphization of the sample at 2.2 GPa. All transformations are irreversible. Our work will have high impact in the design of new composite materials with well-defined thermal expansion, especially for applications under extreme conditions and high mechanic stress.
KW - Phase transition
KW - High-pressure
KW - Complex oxides
PY - 2020
DO - https://doi.org/10.1016/j.matpr.2019.12.141
VL - 25
IS - 3
SP - 428
EP - 430
PB - Elsevier Ltd.
AN - OPUS4-50822
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yusenko, Kirill
A1 - Spektor, K.
A1 - Khandarkhaeva, S.
A1 - Fedotenko, T.
A1 - Pakhomova, A.
A1 - Kupenko, I.
A1 - Rohrbach, A.
A1 - Klemme, S.
A1 - Crichton, W. A.
A1 - Dyachkova, T. V.
A1 - Tyutyunnik, A. P.
A1 - Zainulin, Y. G.
A1 - Gramilov, S. A.
A1 - Dubrovinsky, L. S.
T1 - Decomposition of single-source precursors under high-temperature highpressure to access osmium–platinum refractory alloys
N2 - Thermal decomposition of (NH4)2[OsxPt1-xCl6] as single-source precursors for Os-Pt binary alloys has been investigated under ambient and high pressure up to 40 GPa. Thermal decomposition of mixed-metal (NH4)2[OsxPt1-xCl6] precursor in hydrogen atmosphere (reductive environment) under ambient pressure results in formation of β-trans[Pt(NH3)2Cl2] and α-trans-[Pt(NH3)2Cl2] crystalline intermediates as well as single and twophase Os—Pt binary alloys. For the first time, direct thermal decomposition of coordination compound under pressure has been investigated. A formation of pure metallic alloys from single-source precursors under pressure has been shown. Miscibility between fcc- and hcpstructured alloys has been probed up to 50 GPa by in situ high-pressure X-ray diffraction. Miscibility gap between fcc- and hcp-structured alloys does not change its positions with pressure up to at least 50 GPa.
KW - High-pressure high-temperature
KW - Osmium
KW - Platinum
KW - Phase diagrams
KW - Alloys
KW - Single-source precursors
PY - 2020
DO - https://doi.org/10.1016/j.jallcom.2019.152121
VL - 813
SP - 152121
PB - Elsevier
AN - OPUS4-50019
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Joubert, J.M.
A1 - Crivello, J.C.
A1 - Yusenko, Kirill
T1 - Modification of Lu's (2005) high pressure model for improved high pressure/high temperature extrapolations. Part II: Modeling of osmium-platinum system at high pressure/high temperature
N2 - In Part I of this paper, we have described a modification brought to the model of Lu (X.-G. Lu et al., Comput. Coupling Phase Diagr. Thermochem. 29 (2005) 49–55) in order to avoid extrapolation problems at high pressure and temperature. We now extend this approach to the study of a binary system: Os–Pt. For this, a complete description (equation of state) of Os at high pressure/high temperature is provided including the liquid phase. The thermodynamic assessment of the system Os–Pt has been carried out at ambient pressure by the Calphad method. All this study has been supported by first principles, special quasi-random structure (including under high pressure) and phonon calculations. Finally, using the high pressure description of metastable structures (hcp Pt and fcc Os), we have been able to obtain by extrapolation a complete description of Os–Pt system up to 500 GPa. Recent experimental data for Os–Pt system obtained up to 50 GPa at various temperatures up to 2300 °C may us allow to validate our modeling approach.
KW - Phase diagrams
KW - High-pressure
PY - 2021
DO - https://doi.org/10.1016/j.calphad.2021.102311
VL - 74
SP - 102311
PB - Elsevier
AN - OPUS4-54005
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Fedorova, E.A.
A1 - Asanov, Igor
A1 - Yusenko, Kirill
A1 - Asanova, T.I.
A1 - La Fontaine, Camille
A1 - Roudenko, olga
A1 - Gerasimov, E.Y.
A1 - Vasilchenko, D
A1 - Korenev, S.V.
T1 - Time-resolved study of thermal decomposition process of (NH4)(2) PtCl6 : Intermediates and Pt nucleation
N2 - Evolution in crystal, electronic and local atomic structures of Pt in ammonium hexachloroplatinate in the course of thermal decomposition in inert and reducing atmospheres have been studied by Powder X-Ray Diffraction (PXRD) and Quick X-ray Absorption Fine Structure (QXAFS) at Pt L3-edge for deeper understanding the thermally-induced solid state reaction and the formation of metallic nanoparticles. A three-step thermal decomposition mechanism of (NH4)2[PtCl6] in the inert atmosphere with the intermediate products Pt(NH3)2Cl2 and PtCl2 has been found instead one-[G.Meyer, A.Möller, J. Less. Common. Met. 170 (1991) 327–331] and two-step one [Q.Kong, F.Baudelet, J.Han, S.Chagnot, L.Barthe, J.Headspith, R. Goldsbrough, F.E.Picca, O.Spalla, Sci. Rep. 2 (2012) 1018–1025] considered early. In the reducing atmosphere, the thermal decomposition is a two-step process with the formation of the intermediate PtCl2. The best approach to determining the number of thermal decomposition steps turned out to be the express-analysis of QXAFS spectra offered in the papers, based on the simultaneous presentation of the most important parameters extracted from X-ray Absorption Near Edge Structure (XANES) and Fourier transformed Extended XAFS (EXAFS). This express-analysis was tested by comparison with results of various approaches such as conventional EXAFS fitting, linear combination fit (LCF), Multivariate Curve Resolution Alternating Least Squares method (MCR ALS).
KW - Platinum
KW - Quick-EXAFS
PY - 2021
DO - https://doi.org/10.1016/j.vacuum.2021.110590
VL - 194
SP - 110590
PB - Elsevier
AN - OPUS4-54008
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Asanova, T.I.
A1 - Asanov, Igor
A1 - Yusenko, Kirill
A1 - Le Fontane, Camille
A1 - Gerasimov, E.Y.
A1 - Zadesenetz, A.V.
A1 - Korenev, S.V.
T1 - Time-resolved study of Pd-Os and Pt-Os nanoalloys formation through thermal decomposition of Pd(NH3)(4) OsCl6 and Pt(NH3)(4) OsCl6 complex salts
N2 - The formation mechanisms of Pd-Os and Pt-Os alloys in the course of thermal decomposition of iso-formular and isostructural complex salts [Pd(NH3)4][OsCl6] and [Pt(NH3)4][OsCl6] in an inert atmosphere have been studied by in-situ QXAFS, XPS and PXRD. The mechanisms of thermal decomposition of the precursors are found to differ from each other, but the detected intermediate products show no significant effect on the local atomic structure around Os, Pt/Pd in their final products. A crystalline beta-trans-[Pd(NH3)2Cl2] intermediate of the first step of thermal decomposition of [Pd(NH3)4][OsCl6] makes the anion [OsCl6]2− transform differently than that of [Pt(NH3)4][OsCl6]. It transforms into a short-lived [Os(NH3)xCl6-x] (2≤x≤4), and then to a distorted octahedron [OsCl6]2−, similar to the high-temperature modification of OsCl4. In case of [Pt(NH3)4][OsCl6], the intermediate [Os(NH3)2Cl4] modifies into four chlorine coordinated Os,{OsCl4}0/1−. Consecutive reduction of Pd(II)/Pt(II) and Os(IV) to the metals defines the homophilic atomic order with the fcc-Pd covered by a random Pd-Os alloy layer and Os on the surface, that is supported by High-Resolution Transmission Electron Mictroscopy (HRTEM) and Scanning TEM (STEM) energy dispersive X-ray (EDX) data, and the diffusion direction going from the surface (hcp-Os) to bulk (fcc-Pd/Pt). As a result, the heterogeneous alloys are formed with a very similar electronic and local atomic structure of Os and Pd/Pt. Upon alloying, the Os 5d5/2,3/2 and Pt 5d5/2,3/2 levels are depleted in the Pt-Os alloys compared to dispersed hcp-Os, fcc-Pt, and Pt foil. This is an unusual behaviour for Os and Pt, calling into question the versatility of d-band theory in bimetallic Os-alloys. The spin-orbit effect at the Os site has been found for both the Pd-Os and Pt-Os alloys, but it is about 4 times less compared to the complex salts. The obtained values for the complex compounds are comparable with those for the iridates, proposed as materials with spin-orbit-induced properties.
KW - Thermal decomposition
KW - Quick-EXAFS
PY - 2021
DO - https://doi.org/10.1016/j.materresbull.2021.111511
VL - 144
SP - 111511
PB - Elsevier Ltd.
AN - OPUS4-54010
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Serebrennikova, P.
A1 - Komarov, V.
A1 - Sukhikh, A.
A1 - Khranenko, S.
A1 - Zadesenetz, A.
A1 - Gromilov, S
A1 - Yusenko, Kirill
T1 - [NiEn3](MoO4)0.5(WO4)0.5 co-crystals as single-source precursors for ternary refractory Ni-Mo-W alloys
N2 - The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown.
KW - Single source precursors
KW - Phase diagrams
PY - 2021
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540123
DO - https://doi.org/10.3390/nano11123272
VL - 11
IS - 12
SP - 1
EP - 12
PB - MDPI
CY - Basel
AN - OPUS4-54012
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - CONF
A1 - Yusenko, Kirill
T1 - Single-source precursors strategy to access refractory high-entropy alloys for electrocatalytic applications
N2 - High-entropy alloys containing up to 6 platinum group metals can be prepared by thermal decomposition of single-source precursors non requiring high temperature. We prepare the first example of a single-phase hexagonal high-entropy alloy. Heat treat- ment up to 1500 K and compression up to 45 GPa do not result in phase changes, a record temperature and pres- sure stability for a single-phase high-entropy alloy. The alloys show pronounced electrocatalytic activity in methanol oxidation, which opens a route for the use of high-entropy alloys as materials for sustainable energy conversion.
T2 - HEA2020: first international virtual workshop on high-entropy alloy and complex solid solution nanoparticles for electrocatalysis
CY - Online meeting
DA - 06.10.2020
KW - High-entropy alloys
KW - Single-source precursors
PY - 2020
AN - OPUS4-54013
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - CONF
A1 - Yusenko, Kirill
A1 - Smekhova, A.
A1 - Kuzmin, A.
T1 - Extended X-Ray absorption fine structure (exafs) to study local constitution of high-entropy alloys
N2 - Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision.
T2 - SPP2006: ordering in high-entropy alloys
CY - Online meeting
DA - 05.10.2021
KW - EXAFS
KW - High-entropy alloys
PY - 2021
AN - OPUS4-54015
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Zvereva, V.V.
A1 - Asanov, I.P.
A1 - Yusenko, Kirill
A1 - Zadesenec, A.V.
A1 - Plyusnin, P.E.
A1 - Gerasimov, E.Yu.
A1 - Maksimovskiy, E.A.
A1 - Korenev, S.V.
A1 - Asanova, T.I.
T1 - Local atomic and electronic structure of Pt‑Os nanoplates and nanofbers derived from the single‑source precursor (NH4)2[Pt0.5Os0.5Cl6]
N2 - Abstract Nowadays, Pt-Os binary systems are mainly considered as catalysts and electrocatalysts, but the role of Os in these processes is still poorly understood. The electronic structure of Pt-Os nanosystems remains a few studied as well. Using bimetallic (NH4)2[Pt0.5Os0.5Cl6] as a single-source precursor for preparing Pt-Os nanoalloy through the thermal decomposition in hydrogen and inert atmospheres, the relation of morphology, atomic ordering, and electronic structure of Pt-Os nanoalloy was examined by in situ Quick XAFS, XPS, PXRD, SEM, and HRTEM techniques. Being the only variable parameter, the decomposition atmosphere was found to govern the morphology of the Pt-Os nanoalloy and change the atomic ordering (alloying extent), which involves a change in the electronic structure. In a hydrogen atmosphere, the nanofibers (NFs) (ø ~ 5–6 nm) with the atomic ordering Oscore&Pt-richshell were observed to form; in a nitrogen atmosphere, thin nanoplates (NPLs) (~ 12 nm) with the atomic architecture Os-richcore&Ptrichshell were found out. The depletion in the Os 5d5/2 and Pt 5d5/2,3/2 states was revealed for Pt-Os nanoalloys.
This unusual result disagrees with the known d-band theory and indicates that there is a gain of non-d conduction electron counts at one or both sites. Mixed conductivity may exist in such Pt-Os nanoalloy that may be responsible for a manifestation of new physical properties of this binary system .
KW - Bimetallic alloy
KW - Nanoalloy
KW - Synchrotron radiation
KW - XAFS
KW - Electronic structure
KW - Alloy morphology
PY - 2021
DO - https://doi.org/10.1007/s11051-021-05378-z
SN - 1388-0764
VL - 24
IS - 1
SP - 1
EP - 23
PB - Springer
AN - OPUS4-55347
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Sergievskaya, A.
A1 - Absil, R.
A1 - Chauvin, A.
A1 - Yusenko, Kirill
A1 - Vesely, J.
A1 - Godfroid, T.
A1 - Konsstantinidis, S.
T1 - Sputtering onto liquids: How does the liquid viscosity affect the formation of nanoparticles and metal films?
N2 - This paper reports on the effect of the solvent viscosity on the formation of gold nanoparticles (Au NPs) during Sputtering onto Liquid (SoL) process. All other parameters related to the plasma and the host liquid are kept constant. SoL is a simple highly reproducible approach for preparation of colloidal dispersions of small naked NPs. The properties of the final product are determined by both the sputtering parameters and the host liquid characteristics. As a model system we chose to sputter a gold target by a direct-current magnetron discharge onto a line of polymerized rapeseed oils having similar surface tension (32.6 ― 33.1 mJ·m-2 at RT). It was found that well dispersed Au NPs grow in the bulk solution of oils with low viscosities (below 630 cP at 25 °C) while gold films form onto the surface of high viscosity liquids (more than 1000 cP at 25 °C). The mean diameter of the individual Au NPs slightly increases with oil viscosity and is in range about 2.1―2.5 nm according to transmission electron microscopy.
KW - Liquid spattering
KW - Nanoparticles
PY - 2023
DO - https://doi.org/10.1039/D2CP03038A
SN - 1463-9084
VL - 25
IS - 4
SP - 2803
EP - 2809
PB - RSC Publ.
CY - Cambridge
AN - OPUS4-56562
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yusenko, Kirill
A1 - Khandarkhaeva, S.
A1 - Bykov, M.
A1 - Fedotenko, T.
A1 - Hanfland, M.
A1 - Sukhikh, A.
A1 - Gromilov, S.
A1 - Dubrovinsky, L.
T1 - Face-centered cubic refractory alloys prepared from single-source precursors
N2 - Three binary fcc-structured alloys (fcc–Ir0.50Pt0.50, fcc Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50) were 14 prepared from [Ir(NH3)5Cl][PtCl6], [Ir(NH3)5Cl][PtBr6], [Rh(NH3)5Cl]2[PtCl6]Cl2 and 15 [Rh(NH3)5Cl][PdCl4]·H2O, respectively, as single-source precursors. All alloys were prepared by 16 thermal decomposition in gaseous hydrogen flow below 800 °C. Fcc–Ir0.50Pt0.50 and fcc–Rh0.50Pd0.50 17 correspond to miscibility gaps on binary metallic phase diagrams and can be considered as 18 metastable alloys. Detailed comparison of [Ir(NH3)5Cl][PtCl6] and [Ir(NH3)5Cl][PtBr6] crystal 19 structures suggests that two isoformular salts are not isostructural. In [Ir(NH3)5Cl][PtBr6], specific 20 Br…Br interactions are responsible for crystal structure arrangement. Room temperature 21 compressibility of fcc–Ir0.50Pt0.50, fcc–Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50 has been investigated up to 50 GPa 22 in diamond anvil cells. All investigated fcc-structured binary alloys are stable under compression. 23 Atomic volumes and bulk moduli show good agreement with ideal solutions model. For fcc–24 Ir0.50Pt0.50, V0/Z = 14.597(6) Å3·atom-1, B0 = 321(6) GPa, B0' = 6(1); for fcc–Rh0.66Pt0.33, V0/Z = 14.211(3) 25 Å3·atom-1, B0 =259(1) GPa, B0' = 6.66(9); for fcc–Rh0.50Pd0.50, V0/Z = 14.18(2) Å3·atom-1, B0 =223(4) GPa, 26 B0' = 5.0(3).
KW - High-pressure
KW - Refractory alloys
KW - Platinum group metals
KW - Single-source precursors
PY - 2020
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508176
DO - https://doi.org/10.3390/ma13061418
VL - 13
IS - 6
SP - 1418
PB - MDPI
CY - Basel
AN - OPUS4-50817
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yusenko, Kirill
A1 - Sukhikh, A.
A1 - Kraus, Werner
A1 - Gromilov, S.
T1 - Synthesis and Crystal Chemistry of Octahedral Rhodium(III) Chloroamines
N2 - Rhodium(III) octahedral complexes with amine and chloride ligands are the most common starting compounds for preparing catalytically active rhodium(I) and rhodium(III) species. Despite intensive study during the last 100 years, synthesis and crystal structures of rhodium(III) complexes were described only briefly. Some [RhClx(NH3)6-x] compounds are still unknown. In this study, available information about synthetic protocols and the crystal structures of possible [RhClx(NH3)6−x] octahedral species are summarized and critically analyzed. Unknown crystal structuresof(NH4)2[Rh(NH3)Cl5],trans–[Rh(NH3)4Cl2]Cl·H2O,andcis–[Rh(NH3)4Cl2]Clarereported based on high quality single crystal X-ray diffraction data. The crystal structure of [Rh(NH3)5Cl]Cl2 was redetermined. All available crystal structures with octahedral complexes [RhClx(NH3)6-x] were analyzed in terms of their packings and pseudo-translational sublattices. Pseudo-translation lattices suggest face-centered cubic and hexagonal closed-packed sub-cells, where Rh atoms occupy nearly ideal lattices.
KW - Pseudo-translationalsublattices
KW - Rhodiumcomplexes
KW - Ligandsubstitution
KW - Crystalstructure
PY - 2020
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508194
DO - https://doi.org/10.3390/molecules25040768
VL - 25
IS - 4
SP - 768
PB - MDPI
CY - Basel
AN - OPUS4-50819
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yusenko, Kirill
A1 - Domonov, D.
A1 - Pechenyuk, S.
A1 - Belyevskii, A.
T1 - Formation of Nanostructured Carbon from [Ni(NH3)6]3[Fe(CN)6]2
N2 - The products of thermal decomposition in an argon atmosphere of [Ni(NH3)6]3[Fe(CN)6]2 as a precursor has been studied. Decomposition products were studied up to 800◦C. Above 600◦C, all coordination bonds in the residues are broken with a formation of Ni3Fe, Fe, and free carbon with a small admixture of nitrogen. Elementary carbon can be easily separated from metals by treatment with a water solution of hydrochloric acid. Only carbon is responsible for the specific surface of the composite products. The released carbon has a high degree of graphitization and begins to oxidize in air above 500°C and is completely oxidized above 700°C.
KW - Carbon materials
KW - Double complex compound
KW - Thermal decomposition
PY - 2020
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508188
DO - https://doi.org/10.3390/nano10020389
VL - 10
IS - 2
SP - 389
PB - MDPI
CY - Basel
AN - OPUS4-50818
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - CONF
A1 - Yusenko, Kirill
T1 - Reaction of high-entropy alloys with hydrogen under extreme conditions
N2 - In the current study, we investigate an interaction under high-pressure high-temperature of single phase fcc-, hcp- and bcc-structured high-entropy alloys with hydrogen, carbon and nitrogen to obtain high-entropy hydrides, carbides and nitrides. Structural changes in high-entropy alloys upon compression and heating in the presence of these light elements are in the focus of our investigation. An easy route to high-entropy hydrides, carbides and nitrides will open new synthetic horizons in compositionally complex materials. Our study suggests that high-entropy alloys form high- entropy hydrides mainly with a composition close to M:H 1:1 ratio. Hydrides can be obtained under compression with hydrogen as a pressure compression medium or using hydrogen fluid as reactive agent.
T2 - Intermetallics 2023
CY - Bad Staffelstein, Germany
DA - 03.10.2023
KW - HEA
PY - 2023
AN - OPUS4-58555
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yusenko, Kirill
A1 - Petrushina, M.
A1 - Dedova, E.
A1 - Portnaygin, A.
A1 - Papynov, E.
A1 - Filatov, E.
A1 - Korenev, S.
A1 - Gubanov, A.
T1 - Effect of temperature and pressure on mixed oxide solid solutions
N2 - A hydrothermal synthesis of ZrW2-xMoxO8 (0 ≤ x ≤ 2) from the corresponding precursors is reported in this paper. High-temperature and high-pressure data are presented for the sample with x = 1.6. An increase in temperature initiates the phase transition from tetragonal precursor to orthorhombic-ZrW2-xMoxO8 (x = 1.6) with the subsequent formation of cubic and trigonal phases. The thermolysis parameter of the disordered cubic ZrW2-xMoxO8 (x = 1.6) phase is 803 K, and the coefficient of thermal expansion is α = -4.6∙10–6 K−1. Data on ZrW2-xMoxO8 (x = 1.6) structure as a function of pressure are obtained for the first time. Pressureinduced changes from cubic to orthorhombic ZrW2-xMoxO8 (x = 1.6) phase at 1.38 GPa are observed. The sample amorphization is irreversible during decompression.
KW - Phase transition
KW - High-pressure
KW - Complex oxides
PY - 2020
DO - https://doi.org/10.1016/j.inoche.2020.107965
VL - 117
SP - 107965
PB - Elsevier B.V.
AN - OPUS4-50821
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yusenko, Kirill
A1 - Zvereva, V.
A1 - Martynova, S.
A1 - Asanov, I.
A1 - La Fontaine, C.
A1 - Roudenko, O.
A1 - Gubanov, A.
A1 - Plyusnin, P.
A1 - Korenev, S.
A1 - Asanova, T.
T1 - Insight of the thermal decomposition of ammonium hexahalogenoiridates(IV) and hexachloroiridate(III)
N2 - Thermal decomposition of (NH4)3[IrCl6]·H2O, (NH4)2[IrCl6] and (NH4)2[IrBr6] in reductive and inert atmospheres has been investigated in situ using quick-EXAFS and temperature-resolved powder X-ray diffraction. For the first time, (NH4)2[Ir(NH3)Cl5] and (NH4)2[Ir(NH3)Br5] have been proven as intermediates of thermal decomposition of (NH4)3[IrCl6]·H2O, (NH4)2[IrCl6] and (NH4)2[IrBr6]. Thermal degradation of (NH4)2[IrCl6] and (NH4)2[IrBr6] is a more complex process as suggested previously and includes simultaneous formation of (NH4)2[Ir(NH3)Cl5] and (NH4)2[Ir(NH3)Br5] intermediates mixed with metallic iridium. In the inert atmosphere, complexes (NH4)[Ir(NH3)2Cl4] and (NH4)[Ir(NH3)2Br4] as well as [Ir(NH3)3Br3] were proposed as possible intermediates before formation of metallic iridium particles
KW - Thermal decomposition
KW - Iridium compounds
KW - EXAFS
KW - In situ PXRD
PY - 2020
DO - https://doi.org/10.1039/D0CP02743J
VL - 22
IS - 40
SP - 22923
EP - 22934
AN - OPUS4-51224
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Gugin, Nikita
A1 - Yusenko, Kirill
A1 - King, Andrew
A1 - Meyer, Klas
A1 - Al-Sabbagh, Dominik
A1 - Villajos Collado, José Antonio
A1 - Emmerling, Franziska
T1 - Lighting up industrial mechanochemistry: Real-time in situ monitoring of reactive extrusion using energy-dispersive X-ray diffraction
N2 - Mechanochemistry is an environmentally friendly synthetic approach that enables the sustainable production of a wide range of chemicals while reducing or eliminating the need for solvents. Reactive extrusion aims to move mechanochemistry from its conventional gram-scale batch reactions, typically performed in laboratory ball mills, to a continuous, large-scale process. Meeting this challenge requires in situ monitoring techniques to gain insights into reactive extrusion and its underlying processes. While the effectiveness of in situ Raman spectroscopy in providing molecular-level information has been demonstrated, our study uses energy-dispersive X-ray diffraction to monitor reactive extrusion in real time at the crystalline level. Our results provide previously unavailable control over the reactive extrusion process, promoting its perception as an industrially feasible green alternative to traditional solvent-based syntheses.
KW - Mechanochemistry
KW - Reactive extrusion
KW - Green chemistry
KW - In situ studies
KW - Time-resolved in situ
KW - TRIS
KW - Synchrotron radiation
KW - Scalable synthesis
KW - Solid-state reactions
KW - Reaction mechanisms
PY - 2024
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613969
DO - https://doi.org/10.1016/j.chempr.2024.07.033
VL - 10
IS - 11
SP - 1
EP - 16
PB - Elsevier B.V.
AN - OPUS4-61396
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yusenko, Kirill
A1 - Kabelitz, Anke
A1 - Schokel, Alexander
A1 - Wagner, Ralf
A1 - Prinz, Carsten
A1 - Kemnitz, E
A1 - Emmerling, Franziska
A1 - Krahl, Thoralf
A1 - de Oliveira Guilherme Buzanich, Ana
T1 - Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study
N2 - Rare-earth based luminescent materials are key functional components for the rational design of light-conversion smart devices. Stable Eu3+-doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat-treated material increases in comparison with as-synthesized samples. Particles were investigated in solution using X-ray diffraction, small-angle X-ray scattering, and X-ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non-radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material.
KW - SrF2
KW - EXAFS
KW - Eu
PY - 2021
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540094
DO - https://doi.org/10.1002/cnma.202100281
VL - 7
IS - 11
SP - 1221
EP - 1229
PB - Wiley Online Library
AN - OPUS4-54009
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Radtke, Martin
A1 - Yusenko, Kirill
A1 - Stawski, Tomasz
A1 - Kulow, Anicó
A1 - Cakir, Cafer Tufan
A1 - Röder, Bettina
A1 - Naese, Christoph
A1 - Britzke, Ralf
A1 - Sintschuk, Michael
A1 - Emmerling, Franziska
T1 - BAMline - A real-life sample materials research beamline
N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research.
KW - Extended X-ray absorption fine structure
KW - Energy storage
KW - Environmental impacts
KW - Nondestructive testing techniques
KW - X-ray fluorescence spectroscopy
KW - Corrosion
KW - Near edge X-ray absorption fine structure spectroscopy
KW - X-ray absorption spectroscopy
PY - 2023
DO - https://doi.org/10.1063/5.0157194
VL - 158
IS - 24
SP - 1
EP - 22
PB - AIP Publishing
AN - OPUS4-57824
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - CONF
A1 - Yusenko, Kirill
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Radtke, Martin
T1 - Studies of high-entropy alloys using x-ray absorption fine structure at the bamline
N2 - BAM line is multipurpose high-energy beamline. To extend studies of multicomponent alloys using EXAFS we perform own research and user experiments requiring multiedge spectroscopy, high-temperature and chemically aggressive sample environments. Our study of multicomponent alloys and high-entropy alloys open new perspectives in understanding their reactivity, corrosion, phase transformations and local ordering.
T2 - SPP2006: large scale facilities
CY - Online meeting
DA - 02.11.2021
KW - Synchrotron studies
KW - High-entropy alloys
KW - EXAFS
PY - 2021
AN - OPUS4-54016
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Bruna, F. G.
A1 - Prokop, M.
A1 - Bystron, T.
A1 - Loukrakpam, R.
A1 - Melke, J.
A1 - Lobo, C. M. S.
A1 - Fink, M.
A1 - Zhu, M.
A1 - Voloshina, E.
A1 - Kutter, M.
A1 - Hoffmann, H.
A1 - Yusenko, Kirill
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Röder, B.
A1 - Bouzek, K.
A1 - Paulus, B.
A1 - Roth, C.
T1 - Following adsorbed intermediates on a platinum gas diffusion electrode in H3PO3‑containing electrolytes using in situ X‑ray absorption spectroscopy
N2 - One of the challenges of high-temperature polymer electrolyte membrane fuel cells is the poisoning of the Pt catalyst with H3PO4. H3PO4 is imbibed into the routinely used polybenzimidazole-based membranes, which facilitate proton conductivity in the temperature range of 120−200 °C. However, when leached out of the membrane by water produced during operation, H3PO4 adsorbs on the Pt catalyst surface, blocking the active sites and hindering the oxygen reduction reaction (ORR).
The reduction of H3PO4 to H3PO3, which occurs at the anode due to a combination of a low potential and the presence of gaseous H2, has been investigated as an additional important contributing factor to the observed poisoning effect. H3PO3 has an affinity toward adsorption on Pt surfaces even greater than that of H2PO4 −. In this work, we investigated the poisoning effect of both H3PO3 and H3PO4 using a half-cell setup with a gas diffusion electrode under ambient conditions. By means of in situ X-ray absorption spectroscopy, it was possible to follow the signature of different species adsorbed on the Pt nanoparticle catalyst (H, O, H2PO4 −, and H3PO3) at different potentials under ORR conditions in various electrolytes (HClO4, H3PO4, and H3PO3). It was found that H3PO3 adsorbs in a pyramidal configuration P(OH)3 through a Pt−P bond. The competition between H3PO4 and H3PO3 adsorption was studied, which should allow for a better understanding of the catalyst poisoning mechanism and thus assist in the development of strategies to mitigate this phenomenon in the future by minimizing H3PO3 generation by, for example, improved catalyst design or adapted operation conditions or changes in the electrolyte composition.
KW - H3PO4 life cycle
KW - XAS
KW - In situ coupling
KW - High-temperature fuel cells
KW - Δμ XANES
KW - H3PO3
PY - 2022
DO - https://doi.org/10.1021/acscatal.2c02630
SN - 2155-5435
VL - 12
IS - 18
SP - 11472
EP - 11484
PB - ACS
CY - Washington, DC
AN - OPUS4-55815
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Smekhova, A.
A1 - Kuzmin, A.
A1 - Siemensmeyer, K.
A1 - Abrudan, R.
A1 - Reinholz, Uwe
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Schneider, M.
A1 - Laplanche, G.
A1 - Yusenko, Kirill
T1 - Inner relaxations in equiatomic single-phase high-entropy Cantoralloy
N2 - The superior properties of high-entropy multi-functional materials are strongly connected with their atomic heterogeneity through many different local atomic interactions. The detailed element-specific studies on a local scale can provide insight into the primary arrangements of atoms in multicomponent systems and benefit to unravel the role of individual components in certain macroscopic properties of complex compounds. Herein, multi-edge X-ray absorption spectroscopy combined with reverse Monte Carlo simulations was used to explore a homogeneity of the local crystallographic ordering and specific structure relaxations of each constituent in the equiatomic single-phase facecentered cubic CrMnFeCoNi high-entropy alloy at room temperature. Within the considered fitting approach, all five elements of the alloy were found to be distributed at the nodes of the fcc lattice without any signatures of the additional phases at the atomic scale and exhibit very close statistically averaged interatomic distances (2.54 – 2.55 Å) with their nearest-neighbors. Enlarged structural displacements were found solely for Cr atoms. The macroscopic magnetic properties probed by conventional magnetometry demonstrate no opening of the hysteresis loops at 5 K and illustrate a complex character of the long-range magnetic order after field-assisted cooling in ± 5 T. The observed magnetic behavior is assigned to effects related to structural relaxations of Cr. Besides, the advantages and limitations of the reverse Monte Carlo approach to studies of multicomponent systems like high-entropy alloys are highlighted.
KW - Magnetism
KW - High-entropy alloys
KW - Reverse Monte Carlo (RMC)
KW - Element-specific spectroscopy
KW - Extended X-ray absorption fine structure (EXAFS)
KW - X-ray absorption near edge structure (XANES)
PY - 2022
DO - https://doi.org/10.1016/j.jallcom.2022.165999
SN - 0925-8388
VL - 920
SP - 1
EP - 31
PB - Elsevier
AN - OPUS4-55457
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - CONF
A1 - Yusenko, Kirill
A1 - Emmerling, Franziska
A1 - de Oliveira Guilherme Buzanich, Ana
T1 - X-Ray absorption spectroscopy to study multicomponent materials
N2 - Detailed study of multicomponent systems in solid-state as well as in solution using X-ray diffraction and X-ray spectroscopy is one of the most common topics in modern materials chemistry. 5-6 component high-entropy alloys such as fcc- and bcc-structured AlxCoCrFeNi and fluorescent nanoparticles based on fluorite-structured SrF2 doped by rare-earth metals in organic solutions have high complexity and their local structure cannot be resolved using only diffraction. X-ray absorption spectroscopy should be applied to understand peculiarities in their local structure and make a link between structure on short and long ranges and their macroscopic properties. Here, based on two representativee examples, we discuss how a combination of several X-ray absorption edges might give new insights into complex materials.
T2 - Virtual meeting of the African Light Source
CY - Online meeting
DA - 15.11.2021
KW - EXAFS
KW - Synchrotron studies
PY - 2021
AN - OPUS4-54014
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Lumpe, H.
A1 - Menke, A.
A1 - Haisch, C.
A1 - Mayer, P.
A1 - Kabelitz, Anke
A1 - Yusenko, Kirill
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Block, T.
A1 - Pöttgen, R.
A1 - Emmerling, Franziska
A1 - Daumann, L. J.
T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone
N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol Dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment.
The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled Plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151Eu-Mössbauer spectroscopy, X-ray total scattering, and Extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve Separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent.
KW - Lanthanides
KW - Structural Analysis
KW - Separation
PY - 2020
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510821
DO - https://doi.org/10.1002/chem.202002653
SN - 0947-6539
VL - 26
SP - 1
EP - 8
PB - WILEY-VCH Verlag GmbH & co. KGaA
AN - OPUS4-51082
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - de O. Primo, J.
A1 - Horsth, D.F.
A1 - de S. Correa, J.
A1 - Das, A.
A1 - Bittencourt, C.
A1 - Umek, P.
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Radtke, Martin
A1 - Yusenko, Kirill
A1 - Zanetta, C.
A1 - Anaissi, F.J.
T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water
N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis-
infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake
water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency.
KW - Synchrotron
KW - BAMline
PY - 2022
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440
DO - https://doi.org/10.3390/nano12101764
SN - 2079-4991
VL - 12
IS - 10
SP - 1
EP - 18
PB - MDPI
CY - Basel
AN - OPUS4-56244
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Dubey, A.
A1 - Hon Keat, C.
A1 - Shvartsman, V.
A1 - Yusenko, Kirill
A1 - Escobar, M.
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Hagemann, U.
A1 - Kovalenko, S.
A1 - Stächler, J.
A1 - Lupascu, D.
T1 - Mono-, Di-, and Tri-valent Cation Doped BiFe0.95Mn0.05O3 Nanoparticles: Ferroelectric Photocatalysts
N2 - The ferroelectricity of multivalent co-doped Bismuth ferrite (BiFeO3; BFO) nanoparticles (NPs) is revealed and utilized for light photocatalysis exploiting their narrow electronic band gap. The photocatalytic activity of ferroelectric photocatalysts BiFe0.95Mn0.05O3 (BFM) NPs and mono-, di-, or tri-valent cations (Ag+, Ca2+, Dy3+; MDT) co-incorporated BFM NPs are studied under ultrasonication and in acidic conditions. We find that such doping enhances the photocatalytic activity of the ferroelectric NPs approximately three times. The correlation of the photocatalytic activity with structural, optical, and electrical properties of the doped NPs is established. The increase of spontaneous polarization by the mono- and tri-valent doping is one of the major factors in enhancing the photocatalytic performance along with other factors such as stronger light absorption in the visible range, low recombination rate of charge carriers and larger surface area of NPs. A-site doping of BFO NPs by divalent elements suppresses the polarization, whereas trivalent (Dy3+) and monovalent (Ag+) cations provide an increase of polarization. The depolarization field in these single domain NPs acts as a driving force to mitigate recombination of the photoinduced charge carriers.
KW - Piezoresponse
KW - Bismuth Ferrite
KW - Nanoparticles
KW - Photocatalysis
KW - Ferroelectric
KW - Polarization
PY - 2022
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557230
DO - https://doi.org/10.1002/adfm.202207105
SN - 1616-301X
SP - 1
EP - 16
PB - Wiley
AN - OPUS4-55723
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Glazyrin, Konstantin
A1 - Spektor, Kristina
A1 - Bykov, Maxim
A1 - Dong, Weiwei
A1 - Yu, Ji‐Hun Yu
A1 - Yang, Sangsun Yang
A1 - Lee, Jai‐Sung Lee
A1 - Divinski, Sergiy V.
A1 - Hanfland, Michael
A1 - Yusenko, Kirill
T1 - High‐Entropy Alloys and Their Affinity with Hydrogen: From Cantor to Platinum Group Elements Alloys
N2 - AbstractProperties of high‐entropy alloys are currently in the spotlight due to their promising applications. One of the least investigated aspects is the affinity of these alloys to hydrogen, its diffusion, and reactions. In this study, high pressure is applied at ambient temperature and stress‐induced diffusion of hydrogen is investigated into the structure of high‐entropy alloys (HEA) including the famous Cantor alloy as well as less known, but nevertheless important platinum group (PGM) alloys. By applying X‐ray diffraction to samples loaded into diamond anvil cells, a comparative investigation of transition element incorporating HEA alloys in Ne and H2 pressure‐transmitting media is performed at ambient temperature. Even under stresses far exceeding conventional industrial processes, both Cantor and PGM alloys show exceptional resistance to hydride formation, on par with widely used industrial grade Cu–Be alloys. The observations inspire optimism for practical HEA applications in hydrogen‐relevant industry and technology (e.g., coatings, etc), particularly those related to transport and storage.
KW - XRD
KW - HIgh entropy,
KW - Cantor
KW - Alloys
KW - Synchrotron
PY - 2024
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604170
DO - https://doi.org/10.1002/advs.202401741
SP - 1
EP - 8
PB - Wiley VHC-Verlag
AN - OPUS4-60417
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Gomes, Bruna F.
A1 - Prokop, Martin
A1 - Bystron, Tomas
A1 - Loukrakpam, Rameshwori
A1 - Melke, Julia
A1 - Lobo, Carlos M. S.
A1 - Fink, Michael
A1 - Zhu, Mengshu
A1 - Voloshina, Elena
A1 - Kutter, Maximilian
A1 - Hoffmann, Hendrik
A1 - Yusenko, Kirill V.
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Röder, Bettina
A1 - Bouzek, Karel
A1 - Paulus, Beate
A1 - Roth, Christina
T1 - Following Adsorbed Intermediates on a Platinum Gas Diffusion Electrode in H3PO3-Containing Electrolytes Using In Situ X-ray Absorption Spectroscopy
N2 - One of the challenges of high-temperature polymer electrolyte membrane fuel cells is the poisoning of the Pt catalystwith H3PO4. H3PO4 is imbibed into the routinely used polybenzimidazole-based membranes, which facilitate Proton conductivity in the temperature range of 120−200 °C. However, when leached out of the membrane by water produced during operation, H3PO4 adsorbs on the Pt catalyst surface, blocking the active sites and hindering the oxygen reduction reaction (ORR).
The reduction of H3PO4 to H3PO3, which occurs at the anode due to a combination of a low potential and the presence of gaseous H2, has been investigated as an additional important contributing factor to the observed poisoning effect. H3PO3 has an affinity toward adsorption on Pt surfaces even greater than that of H2PO4 −. In this work, we investigated the poisoning effect of both H3PO3 and H3PO4 using a half-cell setup with a gas diffusion electrode under ambient conditions. By means of in situ X-ray absorption spectroscopy, it was possible to follow the signature of different species adsorbed on the Pt nanoparticle catalyst (H, O, H2PO4 −, and H3PO3) at different potentials under ORR conditions in various electrolytes (HClO4, H3PO4, and H3PO3). It was found that H3PO3 adsorbs in a pyramidal configuration P(OH)3 through a Pt−P bond. The competition between H3PO4 and H3PO3 adsorption was studied, which should allow for a better understanding of the catalyst poisoning mechanism and thus assist in the development of strategies to mitigate this phenomenon in the future by minimizing H3PO3 generation by, for example, improved catalyst design or adapted operation conditions or changes in the electrolyte composition.
KW - H3PO4 life cycle
KW - XAS
KW - In situ coupling
KW - High-temperature fuel cells
KW - H3PO3,
KW - Δμ XANES
PY - 2022
DO - https://doi.org/10.1021/acscatal.2c02630
SN - 2155-5435
VL - 12
IS - 18
SP - 11472
EP - 11484
PB - American Chemical Society (ACS)
AN - OPUS4-64733
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Smekhova, A.
A1 - Kuzmin, A.
A1 - Siemensmeyer, K.
A1 - Luo, C.
A1 - Chen, K.
A1 - Radu, F.
A1 - Weschke, E.
A1 - Reinholz, Uwe
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Yusenko, Kirill
T1 - Al-driven peculiarities of local coordination and magnetic properties in single-phase Alx-CrFeCoNi high-entropy alloys
N2 - Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2,3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-Surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.
KW - X-ray magnetic circular dichroism (XMCD)
KW - High-entropy alloys
KW - Reverse Monte Carlo
KW - Magnetism
KW - Element-specific spectroscopy
KW - Extended X-ray absorption fine structure (EXAFS)
PY - 2021
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530668
DO - https://doi.org/10.1007/s12274-021-3704-5
SN - 1998-0124
VL - 15
IS - 6
SP - 4845
EP - 4858
PB - Springer
AN - OPUS4-53066
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Smekhova, Alevtina
A1 - Gaertner, Daniel
A1 - Kuzmin, Alexei
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Schuck, Goetz
A1 - Zizak, Ivo
A1 - Wilde, Gerhard
A1 - Yusenko, Kirill
A1 - Divinski, Sergiy
T1 - Anomalies in the short-range local environment and atomic diffusion in single crystalline equiatomic CrMnFeCoNi high-entropy alloy
N2 - AbstractMulti-edge extended X-ray absorption fine structure (EXAFS) spectroscopy combined with reverse Monte Carlo (RMC) simulations was used to probe the details of element-specific local coordinations and component-dependent structure relaxations in single crystalline equiatomic CrMnFeCoNi high-entropy alloy as a function of the annealing temperature. Two representative states, namely a high-temperature state, created by annealing at 1373 K, and a low-temperature state, produced by long-term annealing at 993 K, were compared in detail. Specific features identified in atomic configurations of particular principal components indicate variations in the local environment distortions connected to different degrees of compositional disorder at the chosen representative temperatures. The detected changes provide new atomistic insights and correlate with the existence of kinks previously observed in the Arrhenius dependencies of component diffusion rates in the CrMnFeCoNi high-entropy alloy.
KW - Electrical and Electronic Engineering
KW - General Materials Science
KW - Condensed Matter Physics
KW - Atomic and Molecular Physics, and Optics
KW - CCMat
PY - 2024
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597687
DO - https://doi.org/10.1007/s12274-024-6443-6
SN - 1998-0124
VL - 17
IS - 6
SP - 5336
EP - 5348
PB - Springer Science and Business Media LLC
AN - OPUS4-59768
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Lumpe, H.
A1 - Menke, Annika
A1 - Haisch, C.
A1 - Mayer, P.
A1 - Kabelitz, Anke
A1 - Yusenko, Kirill
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Block, T.
A1 - Pöttgen, R.
A1 - Emmerling, Franziska
A1 - Daumann, L.
T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone
N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent.
KW - PQQ
KW - Lanthanoide
KW - Coordination chemistry
KW - Rare earth elements separations
PY - 2020
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512707
DO - https://doi.org/10.1002/chem.202002653
VL - 26
IS - 44
SP - 10133
EP - 10139
AN - OPUS4-51270
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Smekhova, A.
A1 - Kuzmin, A.
A1 - Siemensmeyer, K.
A1 - Luo, C.
A1 - Taylor, J.
A1 - Thakur, S.
A1 - Radu, F.
A1 - Weschke, E.
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Xiao, B.
A1 - Savan, A.
A1 - Yusenko, Kirill
A1 - Ludwig, A.
T1 - Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale
N2 - The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range.
KW - Magnetism
KW - High-entropy alloys
KW - Reverse Monte Carlo (RMC)
KW - Element-specific spectroscopy
KW - Extended X-ray absorption fine structure (EXAFS),
KW - X-ray magnetic circular dichroism (XMCD),
PY - 2022
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578254
DO - https://doi.org/10.1007/s12274-022-5135-3
SN - 1998-0124
SP - 5626
PB - Springer
AN - OPUS4-57825
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - CONF
A1 - Yusenko, Kirill
T1 - BAMline 2.0 – further technical developments for a broader multipurpose hard X-ray beamline at BESSY II
N2 - We show further development of our beamline in the contexst of further itermational collaboration.
T2 - PACC and AfSC
CY - Accra, Ghana
DA - 28.01.2019
KW - Synchrotron radiation
PY - 2019
AN - OPUS4-47317
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Khandarhaeva, S.
A1 - Fedotenko, T.
A1 - Pakhomova, A.
A1 - Gromilov, S.
A1 - Dubrovinsky, L.
A1 - Dubrovinskaia, N.
A1 - Yusenko, Kirill
T1 - Equations of state of rhodium, iridium and their alloys up to 70 GPa
N2 - Knowledge of the compressional and thermal behaviour of metals and alloys is of a high fundamental and applied value. In this work, we studied the behaviour of Ir, Rh, and their fcc-structured alloys, Ir0.42Rh0.58 and Ir0.26Os0.05Pt0.31Rh0.23Ru0.15, up to 70 GPa using the diamond anvil cell technique with synchrotron X-ray diffraction. We found that all these materials are structurally stable upon room-temperature hydrostatic compression in the whole pressure interval, as well as upon heating to 2273 K both at ambient and high pressure. Rh, Ir0.42Rh0.58 and Ir0.26Os0.05Pt0.31Rh0.23Ru0.15 were investigated under static compression for the first time. According to our data, the compressibility of Ir, Rh, fcc–Ir0.42Rh0.58, and fcc Ir0.26Os0.05Pt0.31Rh0.23Ru0.15, can be described with the 3rd order Birch-Murnaghan equation of state with the following parameters: V0 = 14.14(6) Å3·atom−1, B0 = 341(10) GPa, and B0' = 4.7(3); V0 = 13.73(7) Å3·atom−1, B0 = 301(9) GPa, and B0' = 3.1(2); V0 = 13.90(8) Å3·atom−1, B0 = 317(17) GPa, and B0' = 6.0(5); V0 = 14.16(9) Å3·atom−1, B0 = 300(22) GPa, B0' = 6(1), where V0 is the unit cell volume, B0 and B0' – are the bulk modulus and its pressure derivative.
KW - EOS
KW - Rh-Ir alloys
KW - High-entropy alloys
KW - High-pressure
PY - 2019
DO - https://doi.org/10.1016/j.jallcom.2019.02.206
VL - 788
SP - 212
EP - 218
PB - Elsevier B.V.
AN - OPUS4-47404
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Baek, W.
A1 - Gromilov, S.
A1 - Kuklin, A.
A1 - Kovaleva, E.
A1 - Fedorov, A.
A1 - Sukhikh, Alex
A1 - Hanfland, M.
A1 - Pomogaev, V.
A1 - Melchakova, Y.
A1 - Avramov, P.
A1 - Yusenko, Kirill
T1 - Unique Nanomechanical Properties of Diamond-Lonsdaleite Biphases: Combined Exp and Theor consideration of popigai impact diamonds
N2 - For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3−100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed
under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite.
KW - Compressibility
KW - Lonsdaleite
KW - Impact diamonds
PY - 2019
DO - https://doi.org/10.1021/acs.nanolett.8b04421
VL - 19
IS - 9
SP - 1570
EP - 1576
PB - ACS
AN - OPUS4-47403
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Domonov, D.P.
A1 - Pechenyuk, S.I.
A1 - Semushina, Y.P.
A1 - Yusenko, Kirill
T1 - Solid state transformation in inner coordination sphere of [Co(NH3)6][Fe(C2O4)3]·3H2O as a route to access catalytically active Co-Fe materials
N2 - Thermal decomposition of [Co(NH₃)₆][Fe(C₂O₄)₃]∙3H₂O in argon atmosphere, at a low heating rate (3°/min), and in large amounts of the initial complex (~0.1 mole), has been studied. It was possible to distinguish four decomposition steps upon heating: In the temperature range of 50⁻100 °C-the loss of crystal water; 100⁻190 °C-stability region of dehydrated complex; 230⁻270 °C-the range of stability of intermediate phase with the formula CoFe(NH₃)₂(C₂O₄)₂; 270⁻350 °C-thermal decomposition of the intermediate with the formation of metallic products and further air oxidation with the formation of Co1.5Fe1.5O₄. Catalytic properties of thermolysis products were tested in the decomposition reaction of H₂O₂ (inactive), oxidation of acetone (average activity), and decomposition of ammonium perchlorate (highly active).
KW - Double complex salts
KW - Catalysts
KW - Single-source precursors
PY - 2019
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474014
DO - https://doi.org/10.3390/ma12020221
SN - 1996-1944
VL - 12
IS - 2
SP - 221, 1
EP - 10
PB - mdpi
CY - Zürich
AN - OPUS4-47401
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Pechenyuk, S
A1 - Vikulova, E
A1 - Semushina, Y
A1 - Baidina, I
A1 - Filatov, E
A1 - Yusenko, Kirill
T1 - Isostructurality and Thermal Properties in the Series of Double Complex Salts [M-1(NH3)(6)][M-2(C2O4)(3)]center dot 3H(2)O (M-1 = Co, Ir, M-2 = Fe, Cr)
T1 - ИЗОСТРУКТУРНОСТЬ И ТЕРМИЧЕСКИЕ СВОЙСТВА В РЯДУ ДВОЙНЫХ КОМПЛЕКСНЫХ СОЛЕЙ СОСТАВА
N2 - Preparation of new bimetallic compounds, including double complex salts (DCSs), containing both a platinumgroup metal and a transition metal of the fourth period is of great interest since these compounds can act as precursors of bimetallic materials. One example of using such compounds is the preparation of ultrafine particles of solid solutions of metals or intermetallic compounds on various supports to fabricate highly efficient catalysts with a low content of noble
metals.
Compounds containing coordinated oxalate anions are important objects of synthetic chemistry and interesting precursors. For example, a lot of attention is given to salts with [M(C2O4)2]2– anions, where M = Co, Ni, Cu, Pt, Pd. On the one hand, the uniqueness of oxalate coordinated anions is due to the fact that they are easily obtained and are stable both in aqueous solutions and in the solid phase; on the other hand, they are thermally decomposed at relatively low temperatures, which makes them promising precursors for the fabrication of metallic and oxide materials.
N2 - Синтезирован ряд из четырех изоструктурных двойных комплексных солей, построенных на основе катионов [М1(NH3)6]3+ и анионов [M2(C2O4)3]3-, где M1 = Co, Ir, M2 = Fe, Cr. Соли кристаллизуются в гексагональной пространственной группе симметрии P`3c1. Согласно данным термического анализа в атмосфере аргона, термическая устойчивость (температуры начала разложения обезвоженных продуктов) изучаемых соединений зависит от природы комплексного трисоксалатного аниона и увеличивается в рядах [Ir(NH3)6][Co(C2O4)3] < [Ir(NH3)6][Fe(C2O4)3] < [Ir(NH3)6][Cr(C2O4)3] < [Ir(NH3)6][Ir(C2O4)3] и [Co(NH3)6][Co(C2O4)3] < [Co(NH3)6][Fe(C2O4)3] < [Co(NH3)6][Cr(C2O4)3] < [Co(NH3)6][Ir(C2O4)]. При этом при одинаковом анионе соли гексаммина иридия(III) более устойчивы по сравнению с солями кобальта(III)). При термическом разложении солей [Co(NH3)6][Fe(C2O4)3]·3H2O и [Ir(NH3)6][Fe(C2O4)3] 3H2O в атмосфере водорода образуются твердые растворы Co0,5Fe0,5 и Ir0,5Fe0,5 соответственно.
KW - Single-source precursors
KW - Double complex salts
KW - Catalysts
PY - 2019
UR - https://doi.org/10.1134/S0022476619070060
DO - https://doi.org/10.26902/JSC_id42958
VL - 60
IS - 7
SP - 1110
EP - 1119
PB - Springer
AN - OPUS4-48925
LA - mul
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Bykov, M.
A1 - Yusenko, Kirill
A1 - Bykova, E.
A1 - Pakhomova, A.
A1 - Kraus, Werner
A1 - Dubrovinskaia, N.
A1 - Dubrovinsky, L.
T1 - Synthesis of arsenopyrite-type rhodium pernitride RhN2 from a single-source azide precursor
N2 - Nitrogen-rich noble metal nitrides possess unique mechanical and catalytic properties, therefore their synthesis and characterization is of interest for fundamental solid state chemistry and materials science. In this study we have synthesized a singlesource precursor [Rh(NH3)6]3(N3)5Cl4 (Rh:N ratio 1:11). Its controlled decomposition in a laser-heated diamond anvil cell at 39 GPa resulted in a formation of rhodium pernitride, RhN2. According to the results of single-crystal X-ray diffraction RhN2 has arsenopyrite structure type crystal structure previously unknown for this compound (P21/c (no. 14).
KW - EOS
KW - High-pressure
KW - Nitrides
PY - 2019
DO - https://doi.org/10.1002/ejic.201900488
IS - 32
SP - 3667
EP - 3671
PB - Wiley
AN - OPUS4-48924
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Martins, Ines
A1 - Al-Sabbagh, Dominik
A1 - Bentrup, U.
A1 - Marquardt, Julien
A1 - Schmid, Thomas
A1 - Scoppola, E.
A1 - Kraus, Werner
A1 - Stawski, Tomasz
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Yusenko, Kirill
A1 - Weidner, Steffen
A1 - Emmerling, Franziska
T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate
N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure.
KW - Bismuth
KW - In situ EXAFS
KW - In situ SAXS/WAXS
KW - Lacunary Keggin ion
KW - Polyoxometalates
KW - Self-assembly
PY - 2022
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823
DO - https://doi.org/10.1002/chem.202200079
SN - 0947-6539
VL - 28
IS - 27
SP - 1
EP - 7
PB - Wiley-VCH
CY - Weinheim
AN - OPUS4-54682
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -