TY - JOUR A1 - Zvereva, V.V. A1 - Asanov, I.P. A1 - Yusenko, Kirill A1 - Zadesenec, A.V. A1 - Plyusnin, P.E. A1 - Gerasimov, E.Yu. A1 - Maksimovskiy, E.A. A1 - Korenev, S.V. A1 - Asanova, T.I. T1 - Local atomic and electronic structure of Pt‑Os nanoplates and nanofbers derived from the single‑source precursor (NH4)2[Pt0.5Os0.5Cl6] JF - Research Paper N2 - Abstract Nowadays, Pt-Os binary systems are mainly considered as catalysts and electrocatalysts, but the role of Os in these processes is still poorly understood. The electronic structure of Pt-Os nanosystems remains a few studied as well. Using bimetallic (NH4)2[Pt0.5Os0.5Cl6] as a single-source precursor for preparing Pt-Os nanoalloy through the thermal decomposition in hydrogen and inert atmospheres, the relation of morphology, atomic ordering, and electronic structure of Pt-Os nanoalloy was examined by in situ Quick XAFS, XPS, PXRD, SEM, and HRTEM techniques. Being the only variable parameter, the decomposition atmosphere was found to govern the morphology of the Pt-Os nanoalloy and change the atomic ordering (alloying extent), which involves a change in the electronic structure. In a hydrogen atmosphere, the nanofibers (NFs) (ø ~ 5–6 nm) with the atomic ordering Oscore&Pt-richshell were observed to form; in a nitrogen atmosphere, thin nanoplates (NPLs) (~ 12 nm) with the atomic architecture Os-richcore&Ptrichshell were found out. The depletion in the Os 5d5/2 and Pt 5d5/2,3/2 states was revealed for Pt-Os nanoalloys. This unusual result disagrees with the known d-band theory and indicates that there is a gain of non-d conduction electron counts at one or both sites. Mixed conductivity may exist in such Pt-Os nanoalloy that may be responsible for a manifestation of new physical properties of this binary system . KW - Bimetallic alloy KW - Nanoalloy KW - Synchrotron radiation KW - XAFS KW - Electronic structure KW - Alloy morphology PY - 2021 DO - https://doi.org/10.1007/s11051-021-05378-z SN - 1388-0764 VL - 24 IS - 1 SP - 1 EP - 23 PB - Springer AN - OPUS4-55347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water JF - Nanomaterials N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sergievskaya, A. A1 - Absil, R. A1 - Chauvin, A. A1 - Yusenko, Kirill A1 - Vesely, J. A1 - Godfroid, T. A1 - Konsstantinidis, S. T1 - Sputtering onto liquids: How does the liquid viscosity affect the formation of nanoparticles and metal films? JF - Physical chemistry chemical physics (PCCP) N2 - This paper reports on the effect of the solvent viscosity on the formation of gold nanoparticles (Au NPs) during Sputtering onto Liquid (SoL) process. All other parameters related to the plasma and the host liquid are kept constant. SoL is a simple highly reproducible approach for preparation of colloidal dispersions of small naked NPs. The properties of the final product are determined by both the sputtering parameters and the host liquid characteristics. As a model system we chose to sputter a gold target by a direct-current magnetron discharge onto a line of polymerized rapeseed oils having similar surface tension (32.6 ― 33.1 mJ·m-2 at RT). It was found that well dispersed Au NPs grow in the bulk solution of oils with low viscosities (below 630 cP at 25 °C) while gold films form onto the surface of high viscosity liquids (more than 1000 cP at 25 °C). The mean diameter of the individual Au NPs slightly increases with oil viscosity and is in range about 2.1―2.5 nm according to transmission electron microscopy. KW - Liquid spattering KW - Nanoparticles PY - 2023 DO - https://doi.org/10.1039/D2CP03038A SN - 1463-9084 VL - 25 IS - 4 SP - 2803 EP - 2809 PB - RSC Publ. CY - Cambridge AN - OPUS4-56562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate JF - Chemistry - A European Journal N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joubert, J.M. A1 - Crivello, J.C. A1 - Yusenko, Kirill T1 - Modification of Lu's (2005) high pressure model for improved high pressure/high temperature extrapolations. Part II: Modeling of osmium-platinum system at high pressure/high temperature JF - Calphad-Computer Coupling of Phase Diagrams and Thermochemistry N2 - In Part I of this paper, we have described a modification brought to the model of Lu (X.-G. Lu et al., Comput. Coupling Phase Diagr. Thermochem. 29 (2005) 49–55) in order to avoid extrapolation problems at high pressure and temperature. We now extend this approach to the study of a binary system: Os–Pt. For this, a complete description (equation of state) of Os at high pressure/high temperature is provided including the liquid phase. The thermodynamic assessment of the system Os–Pt has been carried out at ambient pressure by the Calphad method. All this study has been supported by first principles, special quasi-random structure (including under high pressure) and phonon calculations. Finally, using the high pressure description of metastable structures (hcp Pt and fcc Os), we have been able to obtain by extrapolation a complete description of Os–Pt system up to 500 GPa. Recent experimental data for Os–Pt system obtained up to 50 GPa at various temperatures up to 2300 °C may us allow to validate our modeling approach. KW - Phase diagrams KW - High-pressure PY - 2021 DO - https://doi.org/10.1016/j.calphad.2021.102311 VL - 74 SP - 102311 PB - Elsevier AN - OPUS4-54005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedorova, E.A. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Asanova, T.I. A1 - La Fontaine, Camille A1 - Roudenko, olga A1 - Gerasimov, E.Y. A1 - Vasilchenko, D A1 - Korenev, S.V. T1 - Time-resolved study of thermal decomposition process of (NH4)(2) PtCl6 : Intermediates and Pt nucleation JF - Vacuum N2 - Evolution in crystal, electronic and local atomic structures of Pt in ammonium hexachloroplatinate in the course of thermal decomposition in inert and reducing atmospheres have been studied by Powder X-Ray Diffraction (PXRD) and Quick X-ray Absorption Fine Structure (QXAFS) at Pt L3-edge for deeper understanding the thermally-induced solid state reaction and the formation of metallic nanoparticles. A three-step thermal decomposition mechanism of (NH4)2[PtCl6] in the inert atmosphere with the intermediate products Pt(NH3)2Cl2 and PtCl2 has been found instead one-[G.Meyer, A.Möller, J. Less. Common. Met. 170 (1991) 327–331] and two-step one [Q.Kong, F.Baudelet, J.Han, S.Chagnot, L.Barthe, J.Headspith, R. Goldsbrough, F.E.Picca, O.Spalla, Sci. Rep. 2 (2012) 1018–1025] considered early. In the reducing atmosphere, the thermal decomposition is a two-step process with the formation of the intermediate PtCl2. The best approach to determining the number of thermal decomposition steps turned out to be the express-analysis of QXAFS spectra offered in the papers, based on the simultaneous presentation of the most important parameters extracted from X-ray Absorption Near Edge Structure (XANES) and Fourier transformed Extended XAFS (EXAFS). This express-analysis was tested by comparison with results of various approaches such as conventional EXAFS fitting, linear combination fit (LCF), Multivariate Curve Resolution Alternating Least Squares method (MCR ALS). KW - Platinum KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.vacuum.2021.110590 VL - 194 SP - 110590 PB - Elsevier AN - OPUS4-54008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Kabelitz, Anke A1 - Schokel, Alexander A1 - Wagner, Ralf A1 - Prinz, Carsten A1 - Kemnitz, E A1 - Emmerling, Franziska A1 - Krahl, Thoralf A1 - de Oliveira Guilherme Buzanich, Ana T1 - Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study JF - ChemNanoMat N2 - Rare-earth based luminescent materials are key functional components for the rational design of light-conversion smart devices. Stable Eu3+-doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat-treated material increases in comparison with as-synthesized samples. Particles were investigated in solution using X-ray diffraction, small-angle X-ray scattering, and X-ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non-radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material. KW - SrF2 KW - EXAFS KW - Eu PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540094 DO - https://doi.org/10.1002/cnma.202100281 VL - 7 IS - 11 SP - 1221 EP - 1229 PB - Wiley Online Library AN - OPUS4-54009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asanova, T.I. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Le Fontane, Camille A1 - Gerasimov, E.Y. A1 - Zadesenetz, A.V. A1 - Korenev, S.V. T1 - Time-resolved study of Pd-Os and Pt-Os nanoalloys formation through thermal decomposition of Pd(NH3)(4) OsCl6 and Pt(NH3)(4) OsCl6 complex salts JF - Materials Research Bulletin N2 - The formation mechanisms of Pd-Os and Pt-Os alloys in the course of thermal decomposition of iso-formular and isostructural complex salts [Pd(NH3)4][OsCl6] and [Pt(NH3)4][OsCl6] in an inert atmosphere have been studied by in-situ QXAFS, XPS and PXRD. The mechanisms of thermal decomposition of the precursors are found to differ from each other, but the detected intermediate products show no significant effect on the local atomic structure around Os, Pt/Pd in their final products. A crystalline beta-trans-[Pd(NH3)2Cl2] intermediate of the first step of thermal decomposition of [Pd(NH3)4][OsCl6] makes the anion [OsCl6]2− transform differently than that of [Pt(NH3)4][OsCl6]. It transforms into a short-lived [Os(NH3)xCl6-x] (2≤x≤4), and then to a distorted octahedron [OsCl6]2−, similar to the high-temperature modification of OsCl4. In case of [Pt(NH3)4][OsCl6], the intermediate [Os(NH3)2Cl4] modifies into four chlorine coordinated Os,{OsCl4}0/1−. Consecutive reduction of Pd(II)/Pt(II) and Os(IV) to the metals defines the homophilic atomic order with the fcc-Pd covered by a random Pd-Os alloy layer and Os on the surface, that is supported by High-Resolution Transmission Electron Mictroscopy (HRTEM) and Scanning TEM (STEM) energy dispersive X-ray (EDX) data, and the diffusion direction going from the surface (hcp-Os) to bulk (fcc-Pd/Pt). As a result, the heterogeneous alloys are formed with a very similar electronic and local atomic structure of Os and Pd/Pt. Upon alloying, the Os 5d5/2,3/2 and Pt 5d5/2,3/2 levels are depleted in the Pt-Os alloys compared to dispersed hcp-Os, fcc-Pt, and Pt foil. This is an unusual behaviour for Os and Pt, calling into question the versatility of d-band theory in bimetallic Os-alloys. The spin-orbit effect at the Os site has been found for both the Pd-Os and Pt-Os alloys, but it is about 4 times less compared to the complex salts. The obtained values for the complex compounds are comparable with those for the iridates, proposed as materials with spin-orbit-induced properties. KW - Thermal decomposition KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.materresbull.2021.111511 VL - 144 SP - 111511 PB - Elsevier Ltd. AN - OPUS4-54010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serebrennikova, P. A1 - Komarov, V. A1 - Sukhikh, A. A1 - Khranenko, S. A1 - Zadesenetz, A. A1 - Gromilov, S A1 - Yusenko, Kirill T1 - [NiEn3](MoO4)0.5(WO4)0.5 co-crystals as single-source precursors for ternary refractory Ni-Mo-W alloys JF - Nanomaterials N2 - The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown. KW - Single source precursors KW - Phase diagrams PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540123 DO - https://doi.org/10.3390/nano11123272 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Single-source precursors strategy to access refractory high-entropy alloys for electrocatalytic applications N2 - High-entropy alloys containing up to 6 platinum group metals can be prepared by thermal decomposition of single-source precursors non requiring high temperature. We prepare the first example of a single-phase hexagonal high-entropy alloy. Heat treat- ment up to 1500 K and compression up to 45 GPa do not result in phase changes, a record temperature and pres- sure stability for a single-phase high-entropy alloy. The alloys show pronounced electrocatalytic activity in methanol oxidation, which opens a route for the use of high-entropy alloys as materials for sustainable energy conversion. T2 - HEA2020: first international virtual workshop on high-entropy alloy and complex solid solution nanoparticles for electrocatalysis CY - Online meeting DA - 06.10.2020 KW - High-entropy alloys KW - Single-source precursors PY - 2020 AN - OPUS4-54013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -