TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Corrosion stability of piping steels in a circulating supercritical impure CO2 environment T2 - NACE 2013 CY - Orlando, FL, USA DA - 2013-03-17 PY - 2013 AN - OPUS4-27065 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph T1 - Corrosion studies on piping steels exposed to CO2 and artifical brines T2 - EUROCORR 2010 CY - Moscow, Russia DA - 2010-09-13 PY - 2010 AN - OPUS4-23076 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - Corrosion susceptibility of steels under transport and injection exploitation conditions possible in CCS process chain N2 - Once sequestrated, C02 will be transported and injected in its gaseous, liquid or supercritical state. The presence of impurities significantly influences the corrosion behavior of pipeline steels even with small concentrations of water below its Saturation limit. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Corrosion KW - Stainless steel KW - CCS KW - COORAL PY - 2014 SN - 978-3-89746-159-8 SP - 1 AN - OPUS4-32745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Hattendorf, H. T1 - Electrochemical characterization of high alloyed materials in molten salts for solar energy applications N2 - Within the last years the use of feasible alternative energy sources has risen and is going to replace fossil resources more and more. Nevertheless, service conditions in solar facilities are due to the chemical composition of heat transmission media and temperatures, in many cases, extreme in terms of corrosion. Since the construction of power plants shall be economical with maximum life service, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of those facilities. The materials selection depends on the operation temperature of a power plant on the chemical composition of the transmission fluid used. In high corrosive environments Ni-based alloys are often used as an all-round solution for the construction of corrosion resistant parts, because of their good corrosion properties. However, there might be limits for their use regarding their corrosion behavior, with which this contribution deals. Experiences from the electrochemical characterization of materials in aqueous solutions are transferred to molten salts, providing a good addition to common exposure tests at temperatures from 450 0C to 600 0C. By means of electrochemical measurements and exposure tests the suitability of high alloyed materials in molten nitrate salt (60 % NaNO3/40 % KNO3) can be characterized. The method was verified on different Ni-based alloys (UNS N08810, UNS N06600) and Titanium (UNS R50250). T2 - NACE International Corrosion Conference 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Localized corrosion KW - Nickel based alloys KW - Solar energy KW - Renewables KW - Electrochemical characterization KW - UNS N08810 KW - UNS N06600 KW - UNS R50250 PY - 2015 SP - paper 5659, S. 1 EP - 9 AN - OPUS4-34748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph T1 - Electrochemical studies on pitting corrosion on Cr13 piping steel exposed to CO2 and artifical brine with high chloride concentration T2 - 2. Young Materials Scientist Workshop des World Material Research Institue Forums (WMRIF), BAM CY - Berlin, Germany DA - 2010-08-30 PY - 2010 AN - OPUS4-23077 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph ED - Lexow, J. ED - Kishi, T. ED - Kitagawa, M. ED - Böllinghaus, T. T1 - Electrochemical studies on pitting corrosion on Cr13 steel exposed to CO2 and artificial brine with high chloride concentration N2 - Within the project COORAL (German acronym for 'CO2 purity for capture and storage') first studies on piping steels exposed to CO2 and artificial brine with high chloride concentration have been carried out. Corrosion behavior of martensitic Cr13 steel (1.4034) was investigated in a corrosive environment (artificial saline brine, T = 60 °C, CO2-flow rate 3 – 5 L/h, atmospheric pressure, exposure times from 1 h up to 14 days) using electrochemical and metallographic techniques. Different corrosion kinetics were observed as a function of exposure times and chloride concentration in the artificial brine. In CO2-saturated brine pitting corrosion was observed at free corrosion potential, whereas in the brine without addition of NaCl a stable passive layer built up. Predictions about corrosion mechanism are made and verified by means of surface analytical techniques. KW - Stainless steel KW - Pitting corrosion KW - Electrochemistry KW - Carbon dioxide PY - 2012 SN - 978-3-642-23347-0 SN - 978-3-642-23348-7 SP - 45 EP - 53 PB - Springer CY - Berlin Heidelberg AN - OPUS4-27393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph T1 - Elektrochemische Untersuchungen in Nitratsalzschmelzen T2 - GfKorr Arbeitskreissitzung Korrosion und Korrosionsschutz von Eisen und Stahl CY - Duisburg, Germany DA - 2013-12-03 PY - 2013 AN - OPUS4-29686 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo Salgado, I. T1 - Material challenge for carbon capture and storage - Crevice corrosion susceptibility of super austenitic stainless steel UNS NO8031 (alloy 31) and duplex stainless steel S32101 in CO2 saturated saline brine N2 - Corrosion resistance of duplex stainless Steel UNS S32101 and super austenitic stainless Steel UNS NO8031 (alloy 31) was investigated in crevice conditions in a corrosive environment (saline brine, T = 60 °C, C02-flow rate 3-5 L/h, normal pressure) using electrochemical and metallographic techniques. Rectangular rubber was used to form a metal/non-metal-crevice configuration. Potentiodynamic measurements have been carried out in order to determine critical pitting and repassivation potentials. Potentiostatic measurements at different Potentials have been performed and the dependence of pit depth on the potential applied in crevice conditions was investigated. It was shown that the repassivation potential of duplex stainless Steel S32101 coincides with its corrosion potential. Strang pitting corrosion occurred after potentiodynamic measurements with pit depths up to 100 pm. Otherwise, stainless Steel UNS NO8031 shows about 0.5 V difference between the free corrosion potential and the repassivation potential and did not show any signs of pitting corrosion after polarization measurements. Slight rouging effects have been observed. By potentiostatic measurements on duplex stainless Steel S32101 potentials slightly more positive than the corrosion Potentials causing strong pitting corrosion, and pit depths up to 650 pm were measured. Super austenitic stainless Steel UNS NO8031 did not exhibit any signs of pitting corrosion even by applying potentials much more positive than the corrosion potential. T2 - NACE International Corrosion Conference 2013 CY - Orlando, FL, USA DA - 17.03.2013 KW - CO2 KW - Saturated saline brine KW - Crevice corrosion KW - Pitting corrosion KW - Electrochemical measurements PY - 2013 SN - 978-1-627-48145-8 SP - 1 EP - 8 (Paper 2427) PB - Curran CY - Red Hook, NY AN - OPUS4-28964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Material challenge for CCS - crevice corrosion susceptibility of alloy 31 and duplex steel S32101 in CO2 saturated saline brine T2 - NACE 2013 CY - Orlando, FL, USA DA - 2013-03-17 PY - 2013 AN - OPUS4-27066 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Material challenges for stainless steel in carbon capture and storage N2 - Corrosion resistance of duplex stainless steel (SS) (UNS S32101) and super austenitic SS (UNS NO8031) (Alloy 31) was investigated in crevice conditions in a saline brine. Rubber was used to form a metal/non-metal-crevice confguration. UNS NO8031 did not exhibit any signs of pitting corrosion even by applying potentials much more positive than the corrosion potential. KW - Corrosion KW - CO2 KW - Saline aquifer fluids PY - 2014 SN - 0094-1492 VL - 53 IS - 5 SP - 2 EP - 5 CY - Houston, Tex. AN - OPUS4-30633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steels caused by impurities: roles of each impure components and benchmarks N2 - Carbon Capture, Utilization and Storage (CCUS) has been proposed as a promising technology for the mitigation of CO2 emissions into the atmosphere from fossil-fuel-operated power generation plants. As the reliability and cost effectiveness of the pipeline transport network is crucial to the overall operability and resilience of the CCUS system, it is vital to realize the possible corrosion risks of the employed pipeline steels corresponding to the impurity level of the gas source. Recent studies have shown that even the high alloyed materials might be susceptible to general and/or localized corrosion by the condensates forming from the impurities such as SOx, NOx, CO, O2 and water [1]. Up to now, however, there is no regulation procedure which defines the maximum acceptable level of impurities and the combination of them for each employed pipeline steels. Herein, systematic experiment series were conducted by mixing pure CO2 gas with varying concentration of each impurity and with the varying combination of them. Each time, the mixture was then fed (1 L/min) into the reactor containing 12 specimens for 120-600 h at 5°C (to simulate the sub-level pipeline transport). The resulted condensate was collected and analyzed by ionic chromatography and atomic absorption spectroscopy to determine the chemical composition. In this study, the “worst-case scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppm NO2, and 220 ppm SO2 as impurities, resulted in the condensate containing H2SO4 0.114 M and HNO3 0.0184 M (pH 2.13). This “original” condensate was then re-produced to carry out exposure tests and electrochemical characterization including corrosion potentials and impedance spectroscopy in CO2 saturated condition for 7-14 days at the same temperature. The corrosion rate was also measured by mass loss method. We can conclude that, at the initial stage, HNO3 plays the dominant role in Fe dissolution process, while H2SO4 is responsible for the pit initiation followed by pitting corrosion. Future studies will be focused on the combination effect from the impurities and the exposure test under the regularly changing condensate to mimic the real CO2 pipeline system. T2 - Eurocorr 2016 CY - Montpellier, France DA - 11.09.2016 KW - Carbon capture utilization KW - CO2 KW - Pipeline transport KW - Condensation KW - Corrosion PY - 2016 SP - paper 69810, 1 EP - 2 PB - EFC CY - Montpellier AN - OPUS4-37747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Hattendorf, H. T1 - Suitability of high alloyed materials in molten salts at 600 °C N2 - Within the last years the use of feasible alternative energy sources has risen and is going to replace fossil resources more and more. Nevertheless, service conditions in solar facilities are due to the chemical composition of heat transmission media and temperatures, in many cases, extreme in terms of corrosion. Since the construction of power plants shall be economical with maximum life service, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of those facilities. The materials selection depends on the operation temperature of a power plant on the chemical composition of the transmission fluid used. In high corrosive environments Ni-based alloys are often used as an all-round solution for the construction of corrosion resistant parts, because of their good corrosion properties. However, there might be limits for their use regarding their corrosion behavior, with which this contribution deals. By means of electrochemical measurements and exposure tests the suitability of two high alloyed materials X8NiCrSi38 18 and NiCr25FeAlYB in molten nitrate salt (60 % NaNO3/40 % KNO3) was characterized at 600 °C. T2 - NACE International Corrosion Conference CY - Vancouver, BC, Canada DA - 06.03.2016 KW - Localized corrosion KW - Nickel based alloys KW - Solar energy KW - Renewables KW - Electrochemical characterization KW - X8NiCrSi38-18 KW - NiCr25FeAlYB PY - 2016 SP - 7363-1 EP - 7363-9 CY - Houston, USA AN - OPUS4-36988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Most components that are in contact with CO2-stream consist of steel. Depending on the operating conditions (e.g. temperature, pressure, and CO2-stream composition) specific suitable steels should be used. The compressed CO2-stream is likely to contain process specific impurities; small amounts of SO2 and NO2 in combination with oxygen and water are most harmful. One approach, as currently preferred by pipeline operators, is to clean the CO2-stream to such levels, acceptable for carbon steel, commonly used as pipeline material. Another consideration would be, to use more corrosion resistant alloys for CO2-streams with higher amounts of impurities. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2-stream were carried out reflecting mainly transport and injection conditions. Within the COORAL project (German acronym for “CO2 purity for capture and storage”) levels of impurities in the CO2-stream, being acceptable when using specific steels, were evaluated. Material exposure to dense or multiphase carbon dioxide (CO2) containing specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) can be a challenge to steels. In some situations, condensation of impurities and reaction products from the CO2 stream can occur. CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection shall ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. This COORAL-work was extended by a follow-up project, called CLUSTER. Here the additional influence of impurities was investigated when merging CO2 streams from different sources, combined within a “so-called” cluster. Results are summarized within the following table regarding suitability for different parts of the process chain. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 SP - 1 EP - 2 AN - OPUS4-53460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Kratzig, Andreas A1 - Bettge, Dirk T1 - Synergistic effects of impurities in the condensate on the corrosion of CO2 transport pipeline N2 - For the reliability of transport pipelines the corrosion resistance of the materials used needs to be determined in conditions, which are possible during the transport process. In some situations condensation of components out of the CO2 stream can occur. To study the effect of condensate on transport pipeline steel, a “worst-case scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppmv NO2, and 220 ppmv SO2, was proposed, fed (1.5 L/min) into a glass reactor containing coupon-shaped specimens for 120 600 h at 278 K (to simulate the underground pipeline transport), and resulted in the condensate containing 0.114 M H2SO4 and 0.0184 M HNO3 (pH 2.13). Basing on this “original” condensate, exposure tests and electrochemical characterization together with pH and conductivity in CO2 saturated condition at the same temperature were carried out. The role of each gas impurity and the combination of them, when the condensate is formed, was studied by investigating the role of individual and varying combination of acidic components in the condensate on the corrosion behaviors of the commercial pipeline-steel (L360NB). It can be concluded that although the condensation of NOx in form of HNO3 causes faster corrosion rate, it is the condensation of SOx or the combination of SOx and NOx that may cause much more severe problems in form of localized and pitting corrosions. Different to the corrosion products formed in CO2 atmosphere without impurities (mainly iron carbonate) the corrosion products resulted from these acidic condensation have no protectability, indicating the need of controlling gas quality during the transportation within the pipeline network. T2 - EUROCORR 2017 - PRAG CY - Prague, Czech Republic DA - 03.09.2017 KW - CCUS KW - CO2 corrosion KW - Carbon steels KW - Condensate PY - 2017 SP - Paper 75636,.1 EP - 4 AN - OPUS4-41874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -