TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo Salgado, I. T1 - Material challenge for carbon capture and storage - Crevice corrosion susceptibility of super austenitic stainless steel UNS NO8031 (alloy 31) and duplex stainless steel S32101 in CO2 saturated saline brine N2 - Corrosion resistance of duplex stainless Steel UNS S32101 and super austenitic stainless Steel UNS NO8031 (alloy 31) was investigated in crevice conditions in a corrosive environment (saline brine, T = 60 °C, C02-flow rate 3-5 L/h, normal pressure) using electrochemical and metallographic techniques. Rectangular rubber was used to form a metal/non-metal-crevice configuration. Potentiodynamic measurements have been carried out in order to determine critical pitting and repassivation potentials. Potentiostatic measurements at different Potentials have been performed and the dependence of pit depth on the potential applied in crevice conditions was investigated. It was shown that the repassivation potential of duplex stainless Steel S32101 coincides with its corrosion potential. Strang pitting corrosion occurred after potentiodynamic measurements with pit depths up to 100 pm. Otherwise, stainless Steel UNS NO8031 shows about 0.5 V difference between the free corrosion potential and the repassivation potential and did not show any signs of pitting corrosion after polarization measurements. Slight rouging effects have been observed. By potentiostatic measurements on duplex stainless Steel S32101 potentials slightly more positive than the corrosion Potentials causing strong pitting corrosion, and pit depths up to 650 pm were measured. Super austenitic stainless Steel UNS NO8031 did not exhibit any signs of pitting corrosion even by applying potentials much more positive than the corrosion potential. T2 - NACE International Corrosion Conference 2013 CY - Orlando, FL, USA DA - 17.03.2013 KW - CO2 KW - Saturated saline brine KW - Crevice corrosion KW - Pitting corrosion KW - Electrochemical measurements PY - 2013 SN - 978-1-627-48145-8 SP - 1 EP - 8 (Paper 2427) PB - Curran CY - Red Hook, NY AN - OPUS4-28964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Corrosion stability of piping steels in a circulating supercritical impure CO2 environment N2 - Within the project COORAL (German acronym for ''C02 purity for capture and storage") studies on pipeline steels exposed to circulating supercritical impure C02 have been carried out. For this purpose, a loop consisting of compressors, flow meter and two autoclaves was constructed. In order to simulate the real conditions in pipelines, impurities such as H20, CO, S02, N02 and 02 were added to the C02 stream before compression. Exposure experiments were carried out with Steel specimens placed in the autoclaves. Carbon Steel L360NB, pure iron X20Cr13, X46Cr13, X2CrMnNiN22-5-2 and alloy 31 have been exposed to circulating (flow rate 4 L/min) supercritical impure C02 for one week at 60 °C and 10 MPa Surface analysis and weight loss experiments in order to determine the corrosion products and the corrosion rates showed that the impurities cause corrosion problems. Slight general corrosion by L360NB and soft iron was observed. The initiation of pitting corrosion was observed at the surfaces of the materials X20Cr13, X46Cr13, X2CrMnNiN22-5-2. No visible signs of corrosion have been observed on alloy 31. T2 - NACE International Corrosion Conference 2013 CY - Orlando, FL, USA DA - 17.03.2013 KW - Supercritical circulating CO2 KW - Impurities KW - Exposure test KW - Corrosion PY - 2013 SN - 978-1-627-48145-8 SP - 1 EP - 11 (Paper 2372) PB - Curran CY - Red Hook, NY AN - OPUS4-28965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk A1 - Bohraus, Stefan A1 - Bäßler, Ralph A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion behavior of steels for CO2 injection N2 - The process chain for Carbon Capture and Sequestration (CCS) includes tubing for injection of CO2 into saline aquifers. The compressed CO2 is likely to contain specific impurities; small concentrations of SO2 and NO2 in combination with oxygen and humidity are most harmful. In addition, CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection has to ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. In this comprehensive paper the investigated materials range from low-alloy steels and 13% Cr steels up to high-alloy materials. Electrochemical tests as well as long term exposure tests were performed in CO2, in brine and combination of both; pressure was up to 100 bar, temperature up to 60 °C. Whereas the CO2 stream itself can be handled using low alloy steels, combinations of CO2 and brine require more resistant materials to control the strong tendency to pitting corrosion. The corrosion behavior of heat-treated steels depends on factors such as microstructure and carbon content. For different sections of the injection tube, appropriate materials should be used to guarantee safety and consider cost effectiveness. KW - CCS KW - Injection tubing KW - Corrosion KW - Safety KW - Carbon steel KW - High alloy steel KW - Saline fluid KW - Supercritical CO2 PY - 2014 U6 - https://doi.org/10.1016/j.psep.2013.07.002 SN - 0957-5820 SN - 1744-3598 VL - 92 IS - 1 SP - 108 EP - 118 PB - Elsevier CY - Amsterdam AN - OPUS4-28966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Corrosion resistance of piping steels in circulating supercritical impure CO2 environment due to moisture, SO2 and NO2 impurities T2 - EUROCORR 2013 CY - Estoril, Portugal DA - 2013-09-01 PY - 2013 AN - OPUS4-28968 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Corrosion of pipeline steels due tot the condensation effects caused by SO2 and NO2 impurities in CO2 T2 - EUROCORR 2012 CY - Istanbul, Turkey DA - 2012-09-09 PY - 2012 AN - OPUS4-27064 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Corrosion stability of piping steels in a circulating supercritical impure CO2 environment T2 - NACE 2013 CY - Orlando, FL, USA DA - 2013-03-17 PY - 2013 AN - OPUS4-27065 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Material challenge for CCS - crevice corrosion susceptibility of alloy 31 and duplex steel S32101 in CO2 saturated saline brine T2 - NACE 2013 CY - Orlando, FL, USA DA - 2013-03-17 PY - 2013 AN - OPUS4-27066 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Carrillo Salgado, I. T1 - Corrosion behavior of highly alloyed steels in artificial saline aquifer fluids containing carbon dioxide KW - Highly alloyed steels KW - Carbon dioxide KW - Pitting corrosion PY - 2012 SN - 0430-6252 VL - 9 IS - 2 SP - 393 EP - 396 CY - L'viv, Ukrainian national academy of science AN - OPUS4-26056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph ED - Lexow, J. ED - Kishi, T. ED - Kitagawa, M. ED - Böllinghaus, T. T1 - Electrochemical studies on pitting corrosion on Cr13 steel exposed to CO2 and artificial brine with high chloride concentration N2 - Within the project COORAL (German acronym for 'CO2 purity for capture and storage') first studies on piping steels exposed to CO2 and artificial brine with high chloride concentration have been carried out. Corrosion behavior of martensitic Cr13 steel (1.4034) was investigated in a corrosive environment (artificial saline brine, T = 60 °C, CO2-flow rate 3 – 5 L/h, atmospheric pressure, exposure times from 1 h up to 14 days) using electrochemical and metallographic techniques. Different corrosion kinetics were observed as a function of exposure times and chloride concentration in the artificial brine. In CO2-saturated brine pitting corrosion was observed at free corrosion potential, whereas in the brine without addition of NaCl a stable passive layer built up. Predictions about corrosion mechanism are made and verified by means of surface analytical techniques. KW - Stainless steel KW - Pitting corrosion KW - Electrochemistry KW - Carbon dioxide PY - 2012 SN - 978-3-642-23347-0 SN - 978-3-642-23348-7 SP - 45 EP - 53 PB - Springer CY - Berlin Heidelberg AN - OPUS4-27393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph T1 - Elektrochemische Untersuchungen in Nitratsalzschmelzen T2 - GfKorr Arbeitskreissitzung Korrosion und Korrosionsschutz von Eisen und Stahl CY - Duisburg, Germany DA - 2013-12-03 PY - 2013 AN - OPUS4-29686 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Bohraus, Stefan T1 - Corrosion of CO2 transport and injection pipeline steels due to the condensation effects caused by SO2 and NO2 impurities N2 - Condensates from the gas stream in simulated CO2 transport pipelines have been identified during the experiments in the laboratory. Because of their acidic origin the corrosion resistance of pipeline steels used for CCS (carbon capture and storage) technology might be limited. Over the last years it has become clear that the amount of water and acid building constituents in the CO2 stream has to be controlled very well. In this work, condensates formed in experiments using gaseous CO2 containing high amounts of water, NO2 and SO2 were analyzed, replicated, and used for extensive electrochemical experiments. These highly acidic condensates were enriched with CO2 and then applied to characteristic steels planned to use in the CCS transport chain. Even high alloy steels are susceptible to localized corrosion under these conditions. The results implicate that condensation of aggressive acid droplets has to be avoided or the locations where condensation takes place have to be controlled extensively. KW - Carbon dioxide KW - Carbon steel KW - Corrosion KW - High alloy steel PY - 2015 U6 - https://doi.org/10.1002/maco.201307368 SN - 0947-5117 SN - 1521-4176 VL - 66 IS - 4 SP - 334 EP - 341 PB - Wiley-VCH CY - Weinheim AN - OPUS4-30036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Most components that are in contact with CO2-stream consist of steel. Depending on the operating conditions (e.g. temperature, pressure, and CO2-stream composition) specific suitable steels should be used. The compressed CO2-stream is likely to contain process specific impurities; small amounts of SO2 and NO2 in combination with oxygen and water are most harmful. One approach, as currently preferred by pipeline operators, is to clean the CO2-stream to such levels, acceptable for carbon steel, commonly used as pipeline material. Another consideration would be, to use more corrosion resistant alloys for CO2-streams with higher amounts of impurities. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2-stream were carried out reflecting mainly transport and injection conditions. Within the COORAL project (German acronym for “CO2 purity for capture and storage”) levels of impurities in the CO2-stream, being acceptable when using specific steels, were evaluated. Material exposure to dense or multiphase carbon dioxide (CO2) containing specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) can be a challenge to steels. In some situations, condensation of impurities and reaction products from the CO2 stream can occur. CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection shall ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. This COORAL-work was extended by a follow-up project, called CLUSTER. Here the additional influence of impurities was investigated when merging CO2 streams from different sources, combined within a “so-called” cluster. Results are summarized within the following table regarding suitability for different parts of the process chain. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 SP - 1 EP - 2 AN - OPUS4-53460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Hattendorf, H. T1 - Suitability of high alloyed materials in molten salts at 600 °C N2 - Within the last years the use of feasible alternative energy sources has risen and is going to replace fossil resources more and more. Nevertheless, service conditions in solar facilities are due to the chemical composition of heat transmission media and temperatures, in many cases, extreme in terms of corrosion. Since the construction of power plants shall be economical with maximum life service, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of those facilities. The materials selection depends on the operation temperature of a power plant on the chemical composition of the transmission fluid used. In high corrosive environments Ni-based alloys are often used as an all-round solution for the construction of corrosion resistant parts, because of their good corrosion properties. However, there might be limits for their use regarding their corrosion behavior, with which this contribution deals. By means of electrochemical measurements and exposure tests the suitability of two high alloyed materials X8NiCrSi38 18 and NiCr25FeAlYB in molten nitrate salt (60 % NaNO3/40 % KNO3) was characterized at 600 °C. T2 - NACE International Corrosion Conference CY - Vancouver, BC, Canada DA - 06.03.2016 KW - Localized corrosion KW - Nickel based alloys KW - Solar energy KW - Renewables KW - Electrochemical characterization KW - X8NiCrSi38-18 KW - NiCr25FeAlYB PY - 2016 SP - 7363-1 EP - 7363-9 CY - Houston, USA AN - OPUS4-36988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Carrillo-Salgado, I. T1 - Material challenges for stainless steel in carbon capture and storage N2 - Corrosion resistance of duplex stainless steel (SS) (UNS S32101) and super austenitic SS (UNS NO8031) (Alloy 31) was investigated in crevice conditions in a saline brine. Rubber was used to form a metal/non-metal-crevice confguration. UNS NO8031 did not exhibit any signs of pitting corrosion even by applying potentials much more positive than the corrosion potential. KW - Corrosion KW - CO2 KW - Saline aquifer fluids PY - 2014 SN - 0094-1492 VL - 53 IS - 5 SP - 2 EP - 5 CY - Houston, Tex. AN - OPUS4-30633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Pfennig, A. T1 - Corrosion behaviour of Cr13 steel in CO2 saturated brine with high chloride concentration N2 - The corrosion behaviour of martensitic stainless injection-pipeline steel X46Cr13 exposed to CO2 saturated artificial saline brine with high chloride concentration similar to onshore CCS-site at Ketzin, Germany has been investigated by means of electrochemical technique and microscopic observations at short exposure times (up to 24?h) and by mass loss and metallographic observations at exposure times up to 17520?h. Pitting corrosion kinetics has been characterised and the predictions about the corrosion mechanism are made. KW - Stainless steel KW - Pitting corrosion KW - Electrochemistry KW - Carbon dioxide PY - 2010 U6 - https://doi.org/10.1002/maco.201005932 SN - 0947-5117 SN - 1521-4176 VL - 61 IS - 9999 SP - 1 EP - 5 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-23057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph T1 - Corrosion studies on piping steels exposed to CO2 and artifical brines T2 - EUROCORR 2010 CY - Moscow, Russia DA - 2010-09-13 PY - 2010 AN - OPUS4-23076 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph T1 - Electrochemical studies on pitting corrosion on Cr13 piping steel exposed to CO2 and artifical brine with high chloride concentration T2 - 2. Young Materials Scientist Workshop des World Material Research Institue Forums (WMRIF), BAM CY - Berlin, Germany DA - 2010-08-30 PY - 2010 AN - OPUS4-23077 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Ruhl, Aki Sebastian A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Kranzmann, Axel T1 - Corrosion aspects of materials selection for CO2 transport and storage N2 - The geological storage of carbon dioxide (Carbon Capture and Storage, CCS) in depleted gas reservoirs or in saline aquifers is a widely discussed issue. Carbon dioxide may induce corrosion on the piping steels during compression, transportation and injection. Therefore, selection of appropriate piping steels is a key factor in order to increase the safety and reliability of the CCS technology, and to keep the processes cost-effective. The here described subproject of the COORAL project (German acronym for “C02 purity for capture and storage”) deals with the levels of impurities in the C02 stream that will be acceptable when using specific steels. Material exposure to carbon dioxide (C02) containing specific amounts of water vapor, oxygen (02) sulfur dioxide (S02), nitrogen dioxide (N02), carbon monoxide (CO) can be a challenge to steels. Within this subproject 13 different Steels are tested for suitability as materials used for compression, transportation and injection Units within the CCS chain. T2 - 2nd ICEPE International conference on energy process engineering - Efficient carbon capture for coal power plants CY - Frankfurt/M., Germany DA - 20.06.2011 KW - Carbon capture KW - CCS KW - Corrosion PY - 2011 SP - 76 EP - 78 AN - OPUS4-24250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steels caused by impurities: roles of each impure components and benchmarks N2 - Carbon Capture, Utilization and Storage (CCUS) has been proposed as a promising technology for the mitigation of CO2 emissions into the atmosphere from fossil-fuel-operated power generation plants. As the reliability and cost effectiveness of the pipeline transport network is crucial to the overall operability and resilience of the CCUS system, it is vital to realize the possible corrosion risks of the employed pipeline steels corresponding to the impurity level of the gas source. Recent studies have shown that even the high alloyed materials might be susceptible to general and/or localized corrosion by the condensates forming from the impurities such as SOx, NOx, CO, O2 and water [1]. Up to now, however, there is no regulation procedure which defines the maximum acceptable level of impurities and the combination of them for each employed pipeline steels. Herein, systematic experiment series were conducted by mixing pure CO2 gas with varying concentration of each impurity and with the varying combination of them. Each time, the mixture was then fed (1 L/min) into the reactor containing 12 specimens for 120-600 h at 5°C (to simulate the sub-level pipeline transport). The resulted condensate was collected and analyzed by ionic chromatography and atomic absorption spectroscopy to determine the chemical composition. In this study, the “worst-case scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppm NO2, and 220 ppm SO2 as impurities, resulted in the condensate containing H2SO4 0.114 M and HNO3 0.0184 M (pH 2.13). This “original” condensate was then re-produced to carry out exposure tests and electrochemical characterization including corrosion potentials and impedance spectroscopy in CO2 saturated condition for 7-14 days at the same temperature. The corrosion rate was also measured by mass loss method. We can conclude that, at the initial stage, HNO3 plays the dominant role in Fe dissolution process, while H2SO4 is responsible for the pit initiation followed by pitting corrosion. Future studies will be focused on the combination effect from the impurities and the exposure test under the regularly changing condensate to mimic the real CO2 pipeline system. T2 - Eurocorr 2016 CY - Montpellier, France DA - 11.09.2016 KW - Carbon capture utilization KW - CO2 KW - Pipeline transport KW - Condensation KW - Corrosion PY - 2016 SP - paper 69810, 1 EP - 2 PB - EFC CY - Montpellier AN - OPUS4-37747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Hattendorf, H. T1 - Electrochemical characterization of high alloyed materials in molten salts for solar energy applications N2 - Within the last years the use of feasible alternative energy sources has risen and is going to replace fossil resources more and more. Nevertheless, service conditions in solar facilities are due to the chemical composition of heat transmission media and temperatures, in many cases, extreme in terms of corrosion. Since the construction of power plants shall be economical with maximum life service, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of those facilities. The materials selection depends on the operation temperature of a power plant on the chemical composition of the transmission fluid used. In high corrosive environments Ni-based alloys are often used as an all-round solution for the construction of corrosion resistant parts, because of their good corrosion properties. However, there might be limits for their use regarding their corrosion behavior, with which this contribution deals. Experiences from the electrochemical characterization of materials in aqueous solutions are transferred to molten salts, providing a good addition to common exposure tests at temperatures from 450 0C to 600 0C. By means of electrochemical measurements and exposure tests the suitability of high alloyed materials in molten nitrate salt (60 % NaNO3/40 % KNO3) can be characterized. The method was verified on different Ni-based alloys (UNS N08810, UNS N06600) and Titanium (UNS R50250). T2 - NACE International Corrosion Conference 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Localized corrosion KW - Nickel based alloys KW - Solar energy KW - Renewables KW - Electrochemical characterization KW - UNS N08810 KW - UNS N06600 KW - UNS R50250 PY - 2015 SP - paper 5659, S. 1 EP - 9 AN - OPUS4-34748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - Corrosion susceptibility of steels under transport and injection exploitation conditions possible in CCS process chain N2 - Once sequestrated, C02 will be transported and injected in its gaseous, liquid or supercritical state. The presence of impurities significantly influences the corrosion behavior of pipeline steels even with small concentrations of water below its Saturation limit. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Corrosion KW - Stainless steel KW - CCS KW - COORAL PY - 2014 SN - 978-3-89746-159-8 SP - 1 AN - OPUS4-32745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Carillo Salgado, I. T1 - Corrosion behavior of highly alloyed steels in artificial saline aquifer fluids containing carbon dioxide N2 - C02-corrosion on piping steels might cause problems during injection of flue gases for their storage in deep geological aquifer fluids. Therefore, the selection of appropriate piping steels is a key factor to increase safety and reliability of the Carbon Capture and Storage (CCS) technology, and to keep the process cost-efficient. Within the project COORAL (German acronym for “C02 purity for capture and storage”) corrosion studies on injection piping steels exposed to C02 and artificial brine with high Chloride concentration have been carried out. Corrosion of the injection pipe in C02-rich aquifer fluid may occur within the aquifer brine or when at injection interruptions the aquifer fluid may flow back into the injection pipe. Because of high salinity of aquifer brine and C02-corrosion an appropriate material ranking of injection piping steels should be made. Corrosion resistance of steels 1.4034, 1.4021, 1.4542, 1.4162 and 1.4562 was investigated in a corrosive environment using electrochemical and metallographic techniques. Electrochemical experiments in order to investigate the surface corrosion kinetics and polarization measurements in order to investigate localized corrosion phenomena have been carried out. Critical pitting potentials and repassivation potentials were determined by polarization curves of investigated materials and compared with measured corrosion potentials. Measured values were used in order to determine the suitability and performance of tested steels in C02-injection conditions. T2 - Latincorr 2014 - IX Latin American congress of corrosion CY - Medellín, Colombia DA - 28.10.2014 KW - Highly alloyed steels KW - Carbon dioxide KW - Pitting corrosion PY - 2014 SP - Paper 2445981, 1 EP - 5 AN - OPUS4-32746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.10.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion KW - Steel PY - 2019 SP - Paper 31 PB - Chinese Society for Corrosion and Protection CY - Chongqing/China AN - OPUS4-49301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Kratzig, Andreas A1 - Bettge, Dirk T1 - Synergistic effects of impurities in the condensate on the corrosion of CO2 transport pipeline N2 - For the reliability of transport pipelines the corrosion resistance of the materials used needs to be determined in conditions, which are possible during the transport process. In some situations condensation of components out of the CO2 stream can occur. To study the effect of condensate on transport pipeline steel, a “worst-case scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppmv NO2, and 220 ppmv SO2, was proposed, fed (1.5 L/min) into a glass reactor containing coupon-shaped specimens for 120 600 h at 278 K (to simulate the underground pipeline transport), and resulted in the condensate containing 0.114 M H2SO4 and 0.0184 M HNO3 (pH 2.13). Basing on this “original” condensate, exposure tests and electrochemical characterization together with pH and conductivity in CO2 saturated condition at the same temperature were carried out. The role of each gas impurity and the combination of them, when the condensate is formed, was studied by investigating the role of individual and varying combination of acidic components in the condensate on the corrosion behaviors of the commercial pipeline-steel (L360NB). It can be concluded that although the condensation of NOx in form of HNO3 causes faster corrosion rate, it is the condensation of SOx or the combination of SOx and NOx that may cause much more severe problems in form of localized and pitting corrosions. Different to the corrosion products formed in CO2 atmosphere without impurities (mainly iron carbonate) the corrosion products resulted from these acidic condensation have no protectability, indicating the need of controlling gas quality during the transportation within the pipeline network. T2 - EUROCORR 2017 - PRAG CY - Prague, Czech Republic DA - 03.09.2017 KW - CCUS KW - CO2 corrosion KW - Carbon steels KW - Condensate PY - 2017 SP - Paper 75636,.1 EP - 4 AN - OPUS4-41874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -