TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 U6 - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moad, M. A1 - Chan, B. A1 - Munoz, A. A1 - Conneely, P. A1 - Ricci, M. A1 - Do Rego, E.C.P. A1 - Garrido, B.C. A1 - Violante, F.G.M. A1 - Windust, A. A1 - Dai, X. A1 - Huang, T. A1 - Zhang, W. A1 - Su, F. A1 - Quan, C. A1 - Wang, H. A1 - Lo, M. A1 - Wong, W. A1 - Gantois, F. A1 - Lalerle, B. A1 - Dorgerloh, Ute A1 - Koch, Matthias A1 - Klyk-Seitz, Urszula-Anna A1 - Pfeifer, Dietmar A1 - Philipp, Rosemarie A1 - Piechotta, Christian A1 - Recknagel, Sebastian A1 - Rothe, Robert A1 - Yamazaki, T. A1 - Zakaria, O. B. A1 - Castro, E. A1 - Balderas, M. A1 - González, N. A1 - Salazar, C. A1 - Regalado, L. A1 - Valle, E. A1 - Rodríguez, L. A1 - Laguna, L.Á.. A1 - Ramírez, P. A1 - Avila, M. A1 - Ibarra, J. A1 - Valle, L. A1 - Arce, M. A1 - Mitani, Y. A1 - Konopelko, L. A1 - Krylov, A. A1 - Lopushanskaya, E. A1 - Lin, T.T. A1 - Liu, Q. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Nhlapo, N. A1 - Visser, R. A1 - Kim, B. A1 - Lee, H. A1 - Kankaew, P. A1 - Pookrod, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Gören, A.C. A1 - Bilsel, G. A1 - Yilmaz, H. A1 - Bilsel, M. A1 - Cergel, M. A1 - Coskun, F.G. A1 - Uysal, E. A1 - Gündüz, S. A1 - Ün, I. A1 - Warren, J. A1 - Bearden, D.W. A1 - Bedner, M. A1 - Duewer, D.L. A1 - Lang, B.E. A1 - Lippa, K.A. A1 - Schantz, M.M. A1 - Sieber, J.R. T1 - Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity N2 - KEY COMPARISON Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100–300] and high polarity (pKOW > –2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and a-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. PY - 2014 U6 - https://doi.org/10.1088/0026-1394/51/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 08010, 1 EP - 44 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -