TY - CONF A1 - Wurzler, Nina A1 - Wagner, Ralph A1 - Schutter, Jan David A1 - Das, Chayanika A1 - Dimper, Matthias A1 - An, Biwen A1 - Koerdt, Andrea A1 - Lützenkirchen-Hecht, Dirk A1 - Özcan Sandikcioglu, Özlem T1 - Effect of cultivation conditions on the electrochemical activity of metal reducing bacteria (mrb) on stainless steel surfaces N2 - Investigation of the electrochemical activity of two cultures grown with and without abundance of Fe(III) and their different ability to reduce and therefore dissolve iron oxides in steel and model iron thin films. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - X-ray spectroscopic techniques KW - Microbiologically influenced corrosion KW - MIC KW - XANES KW - Metal reducing bacteria KW - In situ PY - 2019 AN - OPUS4-49692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, J. D. A1 - Wagner, R. A1 - Dimper, M. A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Trained to corrode: Cultivation in the presence of Fe(III) increases the electrochemical activity of iron reducing bacteria – An in situ electrochemical XANES study N2 - This paper reports results from in situ electrochemical X-ray absorption near-edge spectroscopy (XANES) studies of the corrosion processes on model thin iron films in the presence of iron reducing bacteria Shewanella putrefaciens. Here we investigate the electrochemical activity of two cultures grown in the presence and absence of Fe(III) citrate in the culture medium. The XANES spectra and the OCP data of the Fe sample incubated with the culture grown in absence of Fe(III) did not show any significant changes during twenty hours of monitoring. In the case of the culture grown in Fe(III) containing medium, an accelerated dissolution of the iron film was observed together with the formation of a mixed Fe(II)-Fe(III) hydroxide surface layer. The open circuit potential (OCP) steadily approached the free corrosion potential of iron in neutral chloride containing electrolytes, indicating a continuous dissolution process without passivation. KW - Microbiologically influenced corrosion KW - XANES KW - Electrochemistry KW - Iron reducing bacteria PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505732 VL - 112 SP - 106673 PB - Elsevier B.V. AN - OPUS4-50573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schutter, Jan David A1 - Wagner, R. A1 - Dimper, Matthias A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Abundance of Fe(III) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens N2 - The effect of the presence of Fe(III) during the cultivation on the electrochemical activity and corrosion behaviour of dissimilatory iron reducing bacteria Shewanella putrefaciens was studied by means of ex situ and in situ X-ray absorption near-edge spectroscopy (XANES). Stainless steel AISI 304 and thin iron films were studied as substrates. XANES analysis indicated an accelerated iron dissolution and growth of an oxide/hydroxide film for the culture grown with Fe(III) in comparison to the culture grown in absence of Fe(III). Electrochemical Analysis indicated that the biofilm resulted in acceleration of the general corrosion but provides protection against local corrosion. KW - Stainless Steel KW - XANES KW - Iron KW - Cyclic Voltammetry KW - Microbiological Corrosion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513788 VL - 174 SP - 108855 PB - Elsevier Ltd. AN - OPUS4-51378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, Jan David A1 - Wagner, R. A1 - Dimper, Matthias A1 - Hodoroaba, Vasile-Dan A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part II: Effect on biofilm formation and microbially influenced corrosion processes N2 - Biofilm formation and microbially influenced corrosion of the iron-reducing microorganism Shewanella putrefaciens were investigated on stainless steel surfaces preconditioned in the absence and presence of flavin molecules by means of XANES (X-ray absorption near-edge structure) analysis and electrochemical methods. The results indicate that biofilm formation was promoted on samples preconditioned in electrolytes containing minute amounts of flavins. On the basis of the XANES results, the corrosion processes are controlled by the iron-rich outer layer of the passive film. Biofilm formation resulted in a cathodic shift of the open circuit potential and a protective effect in terms of pitting corrosion. The samples preconditioned in the absence of flavins have shown delayed pitting and the samples preconditioned in the presence of flavins did not show any pitting in a window of −0.3- to +0.0-V overpotential in the bacterial medium. The results indicate that changes in the passive film chemistry induced by the presence of minute amounts of flavins during a mild anodic polarization can change the susceptibility of stainless steel surfaces to microbially influenced corrosion. KW - Biofilms KW - XANES KW - Microbially influenced corrosion (MIC) PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-528130 VL - 72 IS - 6 SP - 983 EP - 994 PB - Wiley AN - OPUS4-52813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -