TY - CONF A1 - Wu, Cheng-Chieh T1 - Untersuchung neuer Ansätze zur Schadensfrüherkennung an Tragwerken mittels messungs- und modellbasiertem Strukturmonitoring T2 - Doktorandenseminar der Deutschen Geodätischen Kommission CY - Hanover, Germany DA - 2013-05-23 PY - 2013 AN - OPUS4-29852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wu, Cheng-Chieh T1 - The measurement- and model-based structural analysis for damage detection N2 - Die vorliegende Arbeit soll einen Beitrag zur Überwachung von Ingenieurbauwerken leisten. Die Detektion von Schäden an Bauwerken basiert auf der Auswertung von räumlich und zeitlich verteilten Hybridmessungen. Die erfassten Daten können rein geometrisch oder physikalisch ausgewertet werden. Letzteres ist vorzuziehen, da die Schadensursache mittels geometrisch-physikalischer Gesetze ermittelt werden kann, um rechtzeitig eingreifen und die weitere Nutzung der Bauwerke sicherstellen zu können. Aus diesem Grund werden die kontinuumsmechanischen Feldgleichungen in Verbindung mit der Finite-Elemente-Methode und Hybridmessungen durch die Ausgleichungsrechnung zu einer einzigen Auswertemethode kombiniert. Dabei ergeben sich zwei Aufgabenstellungen. Die erste Aufgabe beschäftigt sich mit der Beziehung zwischen der Finite-Elemente-Methode und der Ausgleichungsrechnung. Die Finite-Elemente-Methode löst bestimmte Problemklassen, die durch ein System elliptischer partieller Differentialgleichungen beschrieben werden. Während die Methode der kleinsten Quadrate eine weitere Klasse von Problemen löst, die als ein überdeterminiertes Gleichungssystem formuliert ist. Die auffallende Ähnlichkeit zwischen den beiden Methoden ist seit vielen Jahrzehnten bekannt. Es bleibt jedoch ungeklärt, warum diese Ähnlichkeit besteht. Der Beitrag soll dies klären, indem die Variationsrechnung im Hinblick auf ihr methodisches Vorgehen untersucht wird. Obwohl das bekannte Gauß-Markov-Modell innerhalb der Methode der kleinsten Quadrate und die Finite-Elemente-Methode inhärent unterschiedliche Problemklassen lösen, wird gezeigt, dass beide Methoden durch die gleichen methodischen Schritte der Variationsrechnung abgeleitet werden können. Aus methodischer Sicht bedeutet dies, dass beide Methoden nicht nur ähnlich, sondern sogar gleich sind. Außerdem wird darauf hingewiesen, wo eine mögliche Querverbindung zu anderen Methoden besteht. Die zweite Aufgabenstellung stellt eine Messungs- und Modellbasierte Strukturanalyse (MeMoS) durch die Integration der Finite-Elemente-Methode in die Ausgleichungsrechnung vor. In numerischen Untersuchungen wird gezeigt, wie diese integrierte Analyse zur Parameteridentifikation sowohl einfacher als auch beliebig geformter Strukturbauteile eingesetzt werden kann. Darauf aufbauend wird untersucht, mit welchen Beobachtungstypen, mit welcher Genauigkeit und an welcher Stelle der Struktur diese Messungen durchgeführt werden müssen, um die Materialparameter möglichst genau zu bestimmen. Dies dient der Ermittlung eines optimalen und wirtschaftlichen Messaufbaus. Mit dieser integrierten Analyse kann auch ein Ersatzmodell einer geometrisch komplexen Struktur ermittelt werden. Die Frage der Erkennung und Lokalisierung von Schäden innerhalb einer Struktur wird mit Hilfe dieser Strukturanalyse behandelt. Die Messungs- und Modellbasierte Strukturanalyse wird mit zwei verschiedenen Testaufbauten, einer Aluminium-Modellbrücke und einem Biegebalken, validiert. N2 - The present work is intended to make a contribution to the monitoring of civil engineering structures. The detection of damage to structures is based on the evaluation of spatially and temporally distributed hybrid measurements. The acquired data can be evaluated purely geometrically or physically. It is preferable to do the latter, since the cause of damage can be determined by means of geometrical-physical laws in order to be able to intervene in time and ensure the further use of the structures. For this reason, the continuum mechanical field equations in conjunction with the finite element method and hybrid measurements are combined into a single evaluation method by the adjustment calculation. This results in two challenges. The first task deals with the relationship between the finite element method and the method of least squares. The finite element method solves certain problem classes, which are described by a system of elliptical partial differential equations. Whereas the method of least squares solves another class of problems, which is formulated as an overdetermined system of equations. The striking similarity between both methods is known since many decades. However, it remains unresolved why this resemblance exists. The contribution is to clarify this by examining the variational calculus, especially with regard to its methodological procedure. Although the well-known Gauss-Markov model within the method of least squares and the finite element method solve inherently different problem classes, it is shown that both methods can be derived by following the same methodological steps of the variational calculus. From a methodical viewpoint, this implies that both methods are not only similar, but actually the same. In addition, it is pointed out where a possible cross-connection to other methods exists. The second task introduces a Measurement- and Model-based Structural Analysis (MeMoS) by integrating the finite element method into the adjustment calculation. It is shown in numerical examinations how this integrated analysis can be used for parameter identification of simple as well as arbitrarily shaped structural components. Based on this, it is examined with which observation types, with which precision and at which location of the structure these measurements must be carried out in order to determine the material parameters as precisely as possible. This serves to determine an optimal and economic measurement set-up. With this integrated analysis, a substitute model of a geometrically complex structure can also be determined. The issue of the detection and localisation of damage within a structure is studied by means of this structural analysis. The Measurement and Model-based Structural Analysis is validated using two different test setups, an aluminum model bridge and a bending beam. T3 - BAM Dissertationsreihe - 166 KW - Ausgleichungsrechnung KW - Finite-Elemente-Methode KW - Integrierte Analyse KW - Kontinuumsmechanik KW - Schadenserkennung KW - Variationsrechnung KW - Adjustment calculation KW - Continuum mechanics KW - Damage detection KW - Finite element method KW - Integrated analysis KW - Variational calculus PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-501977 SN - 1613-4249 VL - 166 SP - 1 EP - 184 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wu, Cheng-Chieh T1 - The measurement- and model-based structural analysis for damage detection T1 - Schadensfrüherkennung mittels messungs- und modellbasierter Strukturanalyse N2 - The present work is intended to make a contribution to the monitoring of civil engineering structures. The detection of damage to structures is based on the evaluation of spatially and temporally distributed hybrid measurements. The acquired data can be evaluated purely geometrically or physically. It is preferable to do the latter, since the cause of damage can be determined by means of geometrical-physical laws in order to be able to intervene in time and ensure the further use of the structures. For this reason, the continuum mechanical field equations in conjunction with the finite element method and hybrid measurements are combined into a single evaluation method by the adjustment calculation. This results in two challenges. The first task deals with the relationship between the finite element method and the method of least squares. The finite element method solves certain problem classes, which are described by a system of elliptical partial differential equations. Whereas the method of least squares solves another class of problems, which is formulated as an overdetermined system of equations. The striking similarity between both methods is known since many decades. However, it remains unresolved why this resemblance exists. The contribution is to clarify this by examining the variational calculus, especially with regard to its methodological procedure. Although the well-known Gauss-Markov model within the method of least squares and the finite element method solve inherently different problem classes, it is shown that both methods can be derived by following the same methodological steps of the variational calculus. From a methodical viewpoint, this implies that both methods are not only similar, but actually the same. In addition, it is pointed out where a possible cross-connection to other methods exists. The second task introduces a Measurement- and Model-based Structural Analysis (MeMoS) by integrating the finite element method into the adjustment calculation. It is shown in numerical examinations how this integrated analysis can be used for parameter identification of simple as well as arbitrarily shaped structural components. Based on this, it is examined with which observation types, with which precision and at which location of the structure these measurements must be carried out in order to determine the material parameters as precisely as possible. This serves to determine an optimal and economic measurement set-up. With this integrated analysis, a substitute model of a geometrically complex structure can also be determined. The issue of the detection and localisation of damage within a structure is studied by means of this structural analysis. The Measurement and Model-based Structural Analysis is validated using two different test setups, an aluminum model bridge and a bending beam. N2 - Die vorliegende Arbeit soll einen Beitrag zur Überwachung von Ingenieurbauwerken leisten. Die Detektion von Schäden an Bauwerken basiert auf der Auswertung von räumlich und zeitlich verteilten Hybridmessungen. Die erfassten Daten können rein geometrisch oder physikalisch ausgewertet werden. Letzteres ist vorzuziehen, da die Schadensursache mittels geometrisch-physikalischer Gesetze ermittelt werden kann, um rechtzeitig eingreifen und die weitere Nutzung der Bauwerke sicherstellen zu können. Aus diesem Grund werden die kontinuumsmechanischen Feldgleichungen in Verbindung mit der Finite-Elemente-Methode und Hybridmessungen durch die Ausgleichungsrechnung zu einer einzigen Auswertemethode kombiniert. Dabei ergeben sich zwei Aufgabenstellungen. Die erste Aufgabe beschäftigt sich mit der Beziehung zwischen der Finite-Elemente-Methode und der Ausgleichungsrechnung. Die Finite-Elemente-Methode löst bestimmte Problemklassen, die durch ein System elliptischer partieller Differentialgleichungen beschrieben werden. Während die Methode der kleinsten Quadrate eine weitere Klasse von Problemen löst, die als ein überdeterminiertes Gleichungssystem formuliert ist. Die auffallende Ähnlichkeit zwischen den beiden Methoden ist seit vielen Jahrzehnten bekannt. Es bleibt jedoch ungeklärt, warum diese Ähnlichkeit besteht. Der Beitrag soll dies klären, indem die Variationsrechnung im Hinblick auf ihr methodisches Vorgehen untersucht wird. Obwohl das bekannte Gauß-Markov-Modell innerhalb der Methode der kleinsten Quadrate und die Finite-Elemente-Methode inhärent unterschiedliche Problemklassen lösen, wird gezeigt, dass beide Methoden durch die gleichen methodischen Schritte der Variationsrechnung abgeleitet werden können. Aus methodischer Sicht bedeutet dies, dass beide Methoden nicht nur ähnlich, sondern sogar gleich sind. Außerdem wird darauf hingewiesen, wo eine mögliche Querverbindung zu anderen Methoden besteht. Die zweite Aufgabenstellung stellt eine Messungs- und Modellbasierte Strukturanalyse (MeMoS) durch die Integration der Finite-Elemente-Methode in die Ausgleichungsrechnung vor. In numerischen Untersuchungen wird gezeigt, wie diese integrierte Analyse zur Parameteridentifikation sowohl einfacher als auch beliebig geformter Strukturbauteile eingesetzt werden kann. Darauf aufbauend wird untersucht, mit welchen Beobachtungstypen, mit welcher Genauigkeit und an welcher Stelle der Struktur diese Messungen durchgeführt werden müssen, um die Materialparameter möglichst genau zu bestimmen. Dies dient der Ermittlung eines optimalen und wirtschaftlichen Messaufbaus. Mit dieser integrierten Analyse kann auch ein Ersatzmodell einer geometrisch komplexen Struktur ermittelt werden. Die Frage der Erkennung und Lokalisierung von Schäden innerhalb einer Struktur wird mit Hilfe dieser Strukturanalyse behandelt. Die Messungs- und Modellbasierte Strukturanalyse wird mit zwei verschiedenen Testaufbauten, einer Aluminium-Modellbrücke und einem Biegebalken, validiert. KW - Damage detection KW - Continuum mechanics KW - Adjustment calculation KW - Finite element method KW - Variational calculus KW - Integrated analysis KW - Schadenserkennung KW - Kontinuumsmechanik KW - Ausgleichungsrechnung KW - Finite-Elemente-Methode KW - Variationsrechnung KW - Integrierte Analyse PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:101:1-2019100201583156925935 SP - 1 EP - 169 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-49288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Völker, Daniel A1 - Weisbrich, S. A1 - Neitzel, F. ED - Holl, H. T1 - The Finite Volume Method in point of view of Finite Element Method N2 - The best-known discretization methods for solving engineering problems formulated as partial differential equations are finite difference method (FDM), finite element method (FEM) and finite volume method (FVM). While the finite volume method is used in fluid mechanics, the finite element method is predominant in solid state mechanics. At first glance, FVM and FEM are two highly specialized methods. However, both methods can solve problems of both solid mechanics and fluid mechanics well. Since experimental mechanics deals not only with solid state physics but also with fluid mechanics problems, we want to understand FVM in the sense of FEM in this work. In the long term, we want to use the variational calculus to unify many important numerical methods in engineering science into a common framework. In this way, we expect that experiences can be better exchanged between different engineering sciences and thus innovations in the field of experimental mechanics can be advanced. But in this work, we limit ourselves to the understanding of the FVM with the help of the variational calculus already known in FEM. We use a simple 1D Poisson equation to clarify the point. First, we briefly summarize the FVM and FEM. Then we will deal with the actual topic of this paper, as we establish the FEM and the FVM on a common basis by variation formulation. It is shown here that the FVM can be understood in terms of the finite element method with the so-called Galerkin-Petrov approach. T2 - 37th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Linz, Österreich DA - 21.09.2021 KW - Finite element method KW - Finite volume method KW - Variational calculation KW - Simulation KW - Computational physics PY - 2021 SN - 978-3-9504997-0-4 SP - 12 EP - 13 AN - OPUS4-53422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Völker, Daniel A1 - Weisbrich, S. A1 - Neitzel, F. T1 - The Finite Volume Method in point of view of Finite Element Method N2 - The best-known discretization methods for solving engineering problems formulated as partial differential equations are finite difference method (FDM), finite element method (FEM) and finite volume method (FVM). While the finite volume method is used in fluid mechanics, the finite element method is predominant in solid state mechanics. At first glance, FVM and FEM are two highly specialized methods. However, both methods can solve problems of both solid mechanics and fluid mechanics well. Since experimental mechanics deals not only with solid state physics but also with fluid mechanics problems, we want to understand FVM in the sense of FEM in this work. In the long term, we want to use the variational calculus to unify many important numerical methods in engineering science into a common framework. In this way, we expect that experiences can be better exchanged between different engineering sciences and thus innovations in the field of experimental mechanics can be advanced. But in this work, we limit ourselves to the understanding of the FVM with the help of the variational calculus already known in FEM. We use a simple 1D Poisson equation to clarify the point. First, we briefly summarize the FVM and FEM. Then we will deal with the actual topic of this paper, as we establish the FEM and the FVM on a common basis by variation formulation. It is shown here that the FVM can be understood in terms of the finite element method with the so-called Galerkin-Petrov approach. T2 - 37th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Finite volume method KW - Finite element method KW - Variational calculation KW - Simulation KW - Computational physics PY - 2021 AN - OPUS4-53424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - On optimal measurement set-ups for parameter identification from an integrated structural analysis of hybrid measurements and finite element model T2 - XIVth Bilateral Czech/German Symposium "Experimental Methods and Numerical Simulation in Engineering Science" CY - Wuppertal, Germany DA - 2014-06-04 PY - 2014 AN - OPUS4-31376 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weisbrich, S. A1 - Wu, Cheng-Chieh A1 - Neitzel, F. ED - Harte, R. T1 - On optimal measurement set-ups for parameter identification from an integrated structural analysis of hybrid measurements and finite element model N2 - One major ambition in Structural Health Monitoring (SHM) is to develop the ability to detect, identify and localize damage as well as to predict the lifespan of civil structures (Worden et al. 2007). This would allow well-informed decision on whether to repair or to demolish these structures. The word monitoring in SHM brings up several frequently ignored questions: What type of sensors and accuracies are needed to monitor a given structure? Where are the optimal sensor placements? How many sensors are necessary? How to analyse spatially distributed hybrid measurements? Or, in short: What is the sensor configuration best suited for structural health monitoring? If these questions are not explicitly addressed, the usefulness of the measurement data for an evaluation is left to coincidence. T2 - XIVth Bilateral Czech/German Symposium 'Experimental methods and numerical simulation in engineering science' CY - Wuppertal, Germany DA - 04.06.2014 PY - 2014 SP - 46 EP - 47 AN - OPUS4-30913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, T. A1 - Weisbrich, S. A1 - Euteneuer, F. A1 - Wu, Cheng-Chieh A1 - Neitzel, F. T1 - Neue Möglichkeiten in der Bauwerksüberwachung durch integrierte Analyse von Sensormessungen und 3D-Bauwerksmodell N2 - Die Verwendung offener Standards bietet eine Vielzahl von Möglichkeiten, gerade im Bereich des Datenaustausches, Datenlagerung, aber auch der Interoperabilität. GML und CityGML sind hervorragende Beispiele für die Beschreibung von Realweltobjekten mittels eines offenen Standards wohingegen SensorML dazu dient, Messungen, Sensoren und Messplattformen zu beschreiben. Die Verwendung solcher Standards eröffnet dem Nutzer nicht nur die Möglichkeiten der Verwendung einer gemeinsamen standardisierten Sprache, sondern auch die Nutzung von offenen Servicestandards, wie Web Feature Service (WFS), Web Map Service (WMS) oder von Sensor Observation Services (SOS). Die Kombination von Geodaten- und Sensorstandards in einer Dienste- und Servicearchitektur geht über bisherige am Markt existierende Lösungen hinaus und schafft eine neuartige Plattform für die Bauwerksüberwachung, die weit mehr als ein simples Datenhaltungsmodell darstellt. Die in diesem Beitrag vorgestellte Plattform ermöglicht eine direkte Integration von Sensordaten sowie deren Bereitstellung durch eine offene Standardsprache. Dabei sind alle Zwischenschritte jederzeit über eine offene Diensteschnittstelle adressierbar und können so verschiedenen Akteuren zur Verfügung gestellt werden. Das große Potential und der Mehrwert eines derartigen Informationssystems liegt vor allem in der permanenten Verfüg-barkeit von Mess- und Objektdaten und einer damit verbundenen integrierten Analyse der Sensormessdaten in Kombination mit einem Finite-Elemente-Modell (FEM), basierend auf den Objektdaten. Die automatische Ableitung eines FE-Modells aus dem 3D-Bauwerks-modell, die Visualisierung der FEM-Simulationsergebnisse anhand des Bauwerksmodells, die Bereitstellung von Messrohdaten und Sensorinformationen zu jedem Messzeitpunkt machen die Plattform zu einem universell einsetzbaren Werkzeug im Bereich der Bauwerksüberwachung. In diesem Beitrag werden die einzelnen Bausteine, die verwendeten Standards und die Interaktion der einzelnen Komponenten zu einem Gesamtsystem vorgestellt. T2 - 34. Wissenschaftlich-technische Jahrestagung der DGPF CY - Hamburg, Germany DA - 26.03.2014 KW - 3D-Geoinformation KW - CityGML KW - Finite-Elemente-Methode PY - 2014 VL - 23 SP - Paper 254, 1 EP - 10 AN - OPUS4-30619 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Strangfeld, Christoph T1 - KonSens - RFID embedded² systems in concrete – validation experiments N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Passive RFID KW - RFID sensors KW - Sensors in concrete KW - Smart structures KW - Structural health monitoring PY - 2019 AN - OPUS4-48790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement N2 - The integration of finite element method (FEM) into the least-squares adjustment presented in [1] is further extended for a joint evaluation of an elastostatic model and displacement field measurement. For linear solids which obey the HOOKE's law, the material parameters determination from measurements is being examined. In many literature, see for example [2], parameters are iteratively tuned until the computed FEM results are in accordance with the measurements. In contrast to these debatable approaches, we follow a rigorous and direct method. The “classical” FEM procedure starts with known material constants and ends up with computed fields such as dis-placement or temperature field. We present a method to invert the FEM procedure using the most general least-squares adjustment – the GAUSS-HELMERT Model (GHM). From given fields, the material parameters are directly calculated. T2 - 32nd Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Stary Smokovec, Slovakia DA - 22.09.2015 PY - 2015 AN - OPUS4-34369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement N2 - The integration of finite element method (FEM) into the least-squares adjustment presented in is further extended for a joint evaluation of an elastostatic model and displacement field measurement. For linear solids which obey the Hooke's law, the material parameters determination from measurements is being examined. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2016 KW - Integrated analysis KW - Inverse problem KW - Finite element method KW - Least-squares adjustment KW - Model and measurement based analysis PY - 2015 AN - OPUS4-35648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Neitzel, F. A1 - Weisbrich, S. T1 - Integration der Finite-Elemente-Methode in die Ausgleichsrechnung zur Parameteridentifikation T2 - 17. Internationaler Ingenieursvermessungskurs 2013 CY - Zurich, Switzerland DA - 2014-01-14 PY - 2014 AN - OPUS4-29967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neitzel, F. A1 - Weisbrich, S. A1 - Wu, Cheng-Chieh ED - Wieser, A. T1 - Integration der Finite-Elemente-Methode in die Ausgleichsrechnung zur Parameteridentifikation N2 - Die Strukturüberwachung von Ingenieurbauwerken beruht heutzutage auf einer Auswertung räumlich und zeitlich verteilter hybrider Messungen, die z. B. mittels Tachymeter, Neigungssensoren, faseroptischen Sensoren (FOS), Dehnmessstreifen (DMS), GPS etc. erfasst werden. Für eine gemeinsame Auswertung müssen neue Methoden adaptiert werden, da diese, wie Lienhart (2012) aufzeigt, nur unter Verwendung eines mechanischen ‘Bauwerkmodells erfolgen kann. In vielen Ingenieurwissenschaften, wie z. B. dem Bauingenieurwesen, findet die Modellierung physikalisch-mechanischer Eigenschaften von Strukturen mithilfe der Finite-Elemente-Methode (FEM) statt. Die Verifizierung eines derartigen Modells erfolgt vorwiegend lediglich durch stellenweise Messung von z. B. Durchbiegungen und einer anschließenden Gegenüberstellung mit den berechneten Modellwerten. Dies ist meist der Tatsache geschuldet, dass für die FE-Modellierung in der Regel kommerzielle Programme verwendet werden, und somit auf viele Teilprozesse des Auswertealgorithmus nicht zugegriffen werden kann. Aus diesem Grund erfolgt in vielen akademischen Fragestellungen die FE-’Modellierung mit Open-Source-Software, wie z. B. FEniCS (2013) oder OpenSees (2013), wodurch auch eine kombinierte Auswertung von Messungen und Modell nach der Methode 'der kleinsten Quadrate ermöglicht wird. In diesem Beitrag wird eine messungs- und modellbasierte Strukturanalyse (MeMoS) durch (die Integration der Finite-Elemente-Methode in die Ausgleichungsrechnung am Beispiel eines Vier-Punkt-Biegeversuchs vorgestellt. In numerischen Untersuchungen wird gezeigt, wie diese integrierte Analyse für eine Parameteridentifikation angewendet werden kann. Für diese Untersuchungen wird ein Finite-Elemente-Modell mit bekannten Randbedingungen und Materialeigenschaften aufgestellt. Die Durchbiegungen, die als Beobachtungen in die Ausgleichung eingehen, werden mithilfe von Simulationsrechnungen erzeugt; der zu fidentifizierende Parameter ist der Elastizitätsmodul eines Balkens. Es wird untersucht, mit welcher Genauigkeit Durchbiegungsmessungen durchgeführt werden müssen und an welcher Stelle des Bauwerks diese Messungen erfolgen sollen, um den Elastizitätsmodul möglichst genau zu bestimmen. Des Weiteren wird der Einfluss der Anzahl der Messstellen auf den zu identifizierenden Parameter untersucht. T2 - 17. Internationaler Ingenieurvermessungskurs CY - Zurich, Switzerland DA - 14.01.2014 KW - Deformationsmessung KW - Finite-Elemente-Methode KW - Ausgleichsrechnung KW - Integrierte Analyse KW - Strukturanalyse KW - Parameteridentifikation PY - 2014 SN - 978-3-87907-535-5 VL - 14 SP - 301 EP - 310 PB - Wichmann AN - OPUS4-30174 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Integrated structural analysis of hybrid measurement and finite element method for damage detection within a slender beam T2 - 31st Danubia Adria Symposium on Advances in Experimental Mechanics CY - Kempten, Germany DA - 2014-09-24 PY - 2014 AN - OPUS4-32044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Integrated structural analysis of hybrid measurement and finite element method for damage detection within a slender beam T2 - 31st Danubia Adria Symposium on Advances in Experimental Mechanics CY - Kempten, Germany DA - 2014-09-24 PY - 2014 AN - OPUS4-31540 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Hille, Falk A1 - Helmerich, Rosemarie A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - E-modulus KW - Impact KW - UHPC KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength PY - 2018 UR - https://www.das2018.ro/ SN - 978-606-23-0874-2 SP - 11 EP - 12 PB - Editura Printech CY - Bucarest, Romania AN - OPUS4-47001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh T1 - Finite-Elemente-Methode "zu Fuß" T2 - Doktoranden-Kolloquium am Institut für Geodäsie der TU Berlin CY - Berlin, Germany DA - 2013-05-21 PY - 2013 AN - OPUS4-29851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Ersatzmodell von komplexen geometrischen Strukturen für FEA N2 - Der Grad der Finite-Elemente-Diskretisierung wird vom Verhältnis der Details zur Objektgröße bestimmt. Die Diskretisierung eines großen Objektes mit vielen kleinen Details führt zu einer hohen Anzahl an Elementen bzw. Knotenpunkten. Die Berechnung solcher Körper erfordern nicht nur sehr hohe Rechenzeit, sondern was die Berechnung unmöglich macht, ist der sehr hohe Speicherbedarf. Mit Hilfe eines Ersatzkörpers wird dieses Problem umgangen. T2 - VDI/VDE-GMA Fachausschuss 2.12 "Strukturanalyse und -überwachung in der Bautechnik im Fachbereich Prozessmesstechnik und Strukturanalyse" CY - Darmstadt, Germany DA - 08.09.2016 KW - Ausgleichungsrechnung KW - Inverse Analysis KW - Finite-Elemente-Method PY - 2016 AN - OPUS4-37522 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Determination of an approximate anisotropic model for a given geometrical complex isotropic structure by means of finite element method and least-squares adjustment N2 - Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. T2 - PhD Day 2016 CY - Berlin, Germany DA - 01.09.2016 KW - Least-Squares Adjustment KW - Inverse Analysis KW - Finite Element Method PY - 2016 AN - OPUS4-37521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. ED - Aulova, Alexandra ED - Rogelj Ritonja, Alenka ED - Emri, Igor T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Inverse analysis KW - Finite element method KW - Least-squares adjustment PY - 2016 SN - 978-961-94081-0-0 SP - 52 EP - 53 CY - Ljubljana AN - OPUS4-37529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Inverse analysis KW - Finite element method KW - Least-squares adjustment PY - 2016 AN - OPUS4-37523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Inverse analysis KW - Finite element method KW - Least-squares adjustment PY - 2016 AN - OPUS4-37524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne remote gas sensing and mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2017 AN - OPUS4-48789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Becker, T. A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Advances in Structural Monitoring by an Integrated Analysis of Sensor Measurements and 3D Building Model T2 - 9th International 3DGeoInfo 2014 CY - Dubai, United Arab Emirates DA - 2014-11-11 PY - 2014 AN - OPUS4-32045 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald A1 - Weisbrich, S. A1 - Neitzel, F. T1 - A small-scale test bridge for measurement- and model-based structural analysis N2 - To examine the capability to detect and localise damage using the Measurement- and Model-based Structural Analysis (MeMoS), a small-scale truss bridge (1520 mm × 720 mm × 720 mm) made of aluminium profiles is built as a test specimen for this purpose. The truss frame of the test bridge is made of aluminium profiles with a sophisticated design of the cross-sectional area. In comparison, with solid profiles, only a fraction of the material is needed to produce the profiles, while their bending resistance decreases slightly. The profiles are built into a truss frame by connecting them by means of fastening sets made of steel. The bridge model is mounted on four steel bearings which each of them consist of a cylinder arranged between two plates. Fixed bearings are made by holding onto one end of the bridge. The bridge is subjected by an external load by placing a heavy object beneath it. At the same time, measurements can be conducted below the bridge. Therefore, the bridge specimen is elevated by attaching it on a pedestal with four columns. Damages can be induced by loosening the fastening pieces. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Adjustment calculation KW - Finite element method KW - Damage detection and localisation KW - Structural analysis KW - Photogrammetry PY - 2018 AN - OPUS4-46113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald A1 - Weisbrich, S. A1 - Neitzel, F. ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A small-scale test bridge for measurement- and model-based structural analysis N2 - To examine the capability to detect and localise damage using the Measurement- and Model-based Structural Analysis (MeMoS), a small-scale truss bridge (1520 mm × 720 mm × 720 mm) made of aluminium profiles is built as a test specimen for this purpose. The truss frame of the test bridge is made of aluminium profiles with a sophisticated design of the cross-sectional area. In comparison, with solid profiles, only a fraction of the material is needed to produce the profiles, while their bending resistance decreases slightly. The profiles are built into a truss frame by connecting them by means of fastening sets made of steel. The bridge model is mounted on four steel bearings which each of them consist of a cylinder arranged between two plates. Fixed bearings are made by holding onto one end of the bridge. The bridge is subjected by an external load by placing a heavy object beneath it. At the same time, measurements can be conducted below the bridge. Therefore, the bridge specimen is elevated by attaching it on a pedestal with four columns. Damages can be induced by loosening the fastening pieces. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Adjustment calculation KW - Finite element method KW - Damage detection and localisation KW - Structural analysis KW - Photogrammetry PY - 2018 SN - 978-606-23-0874-2 SP - 23 EP - 24 PB - PRINTECH CY - Bukarest AN - OPUS4-46116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. T1 - A Four-Point Bending Test Apparatus for Measurement- and Model-based Structural Analysis N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localize damage was examined. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localization responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method PY - 2019 SN - 978-80-261-0876-4 SP - 63 EP - 64 CY - Pilsen, Czech Republic AN - OPUS4-49290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. T1 - A Four-Point Bending Test Apparatus for Measurement- and Model-based Structural Analysis N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localize damage was examined. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localization responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method PY - 2019 AN - OPUS4-49291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel T1 - 3D-Gestalts- und -Verformungsmessung - Anwendungsbeispiele N2 - Der Fokus des Arbeitsfelds ist die messtechnisch fundierte Anwendung der 3D-Verfahrenskombination zur Lösung vielfältiger Messaufgaben mit optimaler Datenqualität für interne und externe Kunden. Das setzt insbesondere eine jeweils problembezogene Messmethodik voraus. Dazu setzen wir kameragestützte 3D-Koordinatenmessverfahren ein, die auf dem fotogrammetrischen Prinzip der Bildtriangulation beruhen. Darunter fallen folgende miteinander flexibel kombinierbare Verfahrensmodifikationen: Mehrbildfotogrammetrie, Messadapter für Geometriemerkmale, Streifenprojektionsverfahren, statische bis hochdynamische Stereofotogrammetrie auf Punktebasis oder aufgabenangepasster Oberflächenmuster und mechanisch-optische Taster. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - 3D-Verformungsmessung KW - Koordinatenmessung KW - Verschiebungsfeld PY - 2019 AN - OPUS4-48791 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -