TY - CONF A1 - Wu, Cheng-Chieh A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald A1 - Weisbrich, S. A1 - Neitzel, F. T1 - A small-scale test bridge for measurement- and model-based structural analysis N2 - To examine the capability to detect and localise damage using the Measurement- and Model-based Structural Analysis (MeMoS), a small-scale truss bridge (1520 mm × 720 mm × 720 mm) made of aluminium profiles is built as a test specimen for this purpose. The truss frame of the test bridge is made of aluminium profiles with a sophisticated design of the cross-sectional area. In comparison, with solid profiles, only a fraction of the material is needed to produce the profiles, while their bending resistance decreases slightly. The profiles are built into a truss frame by connecting them by means of fastening sets made of steel. The bridge model is mounted on four steel bearings which each of them consist of a cylinder arranged between two plates. Fixed bearings are made by holding onto one end of the bridge. The bridge is subjected by an external load by placing a heavy object beneath it. At the same time, measurements can be conducted below the bridge. Therefore, the bridge specimen is elevated by attaching it on a pedestal with four columns. Damages can be induced by loosening the fastening pieces. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Adjustment calculation KW - Finite element method KW - Damage detection and localisation KW - Structural analysis KW - Photogrammetry PY - 2018 AN - OPUS4-46113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald A1 - Weisbrich, S. A1 - Neitzel, F. ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A small-scale test bridge for measurement- and model-based structural analysis N2 - To examine the capability to detect and localise damage using the Measurement- and Model-based Structural Analysis (MeMoS), a small-scale truss bridge (1520 mm × 720 mm × 720 mm) made of aluminium profiles is built as a test specimen for this purpose. The truss frame of the test bridge is made of aluminium profiles with a sophisticated design of the cross-sectional area. In comparison, with solid profiles, only a fraction of the material is needed to produce the profiles, while their bending resistance decreases slightly. The profiles are built into a truss frame by connecting them by means of fastening sets made of steel. The bridge model is mounted on four steel bearings which each of them consist of a cylinder arranged between two plates. Fixed bearings are made by holding onto one end of the bridge. The bridge is subjected by an external load by placing a heavy object beneath it. At the same time, measurements can be conducted below the bridge. Therefore, the bridge specimen is elevated by attaching it on a pedestal with four columns. Damages can be induced by loosening the fastening pieces. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Adjustment calculation KW - Finite element method KW - Damage detection and localisation KW - Structural analysis KW - Photogrammetry PY - 2018 SN - 978-606-23-0874-2 SP - 23 EP - 24 PB - PRINTECH CY - Bukarest AN - OPUS4-46116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Hille, Falk A1 - Helmerich, Rosemarie A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - E-modulus KW - Impact KW - UHPC KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength PY - 2018 UR - https://www.das2018.ro/ SN - 978-606-23-0874-2 SP - 11 EP - 12 PB - Editura Printech CY - Bucarest, Romania AN - OPUS4-47001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -