TY - CONF A1 - Wolf, Marcus A1 - Heynert, Katharina A1 - Böllinghaus, Thomas A1 - Pfennig, A. T1 - First in-situ electrochemical measurement during fatigue testing of injection pipe steels to determine the reliability of a saline aquifer water CCS-site in the Northern German basin N2 - During carbon dioxide storage technology (carbon capture and storage, CCS) components are exposed to a corrosive environment and mechanical stress, which results in corrosion fatigue and inevitably followed by the a lifetime reduction of these components. In order to gain knowledge upon the corrosion fatigue strength of materials, Samples of high alloyed stainless injection-pipe steels AISI 420 X46Cr13, and X5CrNiCuNb16-4 AISI 630 were tested in a at T=60 °C and ambient pressure in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Therefore a corrosion chamber applied to a resonant testing machine allowing for “in situ” test conditions was designed and successfully tested. In-situ tension compression experiments were established using a resonant testing machine at a frequency as low as 30 – 40 Hz. In addition technical CO2 was introduced into the closed system at a rate close to 9 L/h to keep stable environmental conditions. Simultaneously electrochemical testing was performed to get information on failure causes and the mechanism of failure during the injection of CO2 into deep geological layers. S-N plots, micrographic analysis, and surface analysis of the fracture surface were applied to obtain sustainable information on the corrosion fatigue behavior of injection pipe steels. Samples used have a surface roughness of Rz = 4, to simulate technically machined surfaces. X46Cr13 reached the maximum number of cycles (12.5 x 106) at a stress amplitude of 173 MPa. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude at 150 MPa. The scatter range of X5CrNiCuNb16-4 is very high (1:34); by comparison the scatter range of X46Cr13 is only 1:3.5. T2 - GHGT-12 - Greenhouse gas control technologies conference CY - Austin, TX, USA DA - 05.10.2014 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-319426 SN - 1876-6102 N1 - Serientitel: Energy Procedia – Series title: Energy Procedia VL - 63 SP - 5773 EP - 5786 PB - Elsevier Ltd. AN - OPUS4-31942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Gröber, Andre A1 - Böllinghaus, Thomas A1 - Kranzmann, Axel T1 - Corrosion fatigue of 1.4542 exposed to a laboratory saline aquifer water CCS-environment N2 - X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ∼ 30 Hz). Due to the rather heterogeneous fine machined surfaces (Rz=4) the specimens are comparable with prefabricated parts. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa and lies 60% below the stress amplitude measured in air. The scatter range TN = 1:34 is disproportionately large. Although the fracture surface exhibited the typical striations and corroded surface areas no significant differences were found. The hardness was found to be homogeneous in all specimens tested at 335 HV10. Non-metallic inclusions were found within the microstructure, but no correlation could be found between the inclusions and early rupture. Still specimens that showed inclusions at the fracture surface and its cross section endured lower number of cycles. Additionally Aluminium was analysed in specimens with low number of cycles and may be cause for early rupture during corrosion fatigue tests. These findings reveal a very high sensitivity on a homogeneous microstructure upon the corrosion and corrosion fatigue behaviour of X5CrNiCuNb16-4 and needs to be taken into account when regarding this steel as pipe steel during injection of CO2 into saline aquifers. T2 - 13th International Conference on Greenhouse Gas Control Technologies CY - Lausanne, Switzerland DA - 14.11.2016 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418525 SN - 1876-6102 VL - 114 SP - 5219 EP - 5228 AN - OPUS4-41852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -