TY - CONF A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.Ö. T1 - An ultrasound monitoring system for concrete structures T2 - Istanbul bridge conference 2014 (Proceedings) N2 - The research project "Ultrasonic Net for Concrete Monitoring (UNeCOM)" aims at developing a methodology for an embedded ultrasonic network for the condition assessment of infrastructure constructions. Civil engineering structures made of concrete, which are located in tectonically active regions or undergo special loading conditions, may require continuous monitoring. It is important to assess the condition of the building and its stability to recognise and classify the effect of a seismic event or evolving damage at early stages before failure occurs. Embedded ultrasonic sensors offer the possibility to detect changes in the material and degradation mechanisms from inside the structure in areas which are difficult or impossible to inspect otherwise. In contrast to conventional ultrasonic testing methods, where the concrete surfaces are scanned with ultrasound probes, this new approach uses sensors, which are embedded into concrete, eliminating the effect of variable coupling conditions between sensors and concrete. This method allows an integral detection of changes in the concrete structure, for example due to seismic activities, to detect mechanical impacts, as well as degradation of the material due to overloading. Such methods have great relevance especially for the monitoring of constructions like power plants, bridges, offshore structures and other structures with high technical safety requirements. The sensor network can be controlled remotely through the internet which is also being used for data transfer. The embedded sensor network is designed to monitor structural damage and concrete degradation globally with high sensitivity. T2 - Istanbul bridge conference 2014 CY - Istanbul, Turkey DA - 11.08.2014 KW - Ultrasound KW - Concrete KW - Monitoring PY - 2014 SN - 978-605-64131-6-2 SP - Paper 32, 1 EP - 9 AN - OPUS4-32028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert T1 - Using embedded ultrasonic sensors for active and passive concrete monitoring JF - The e-journal of nondestructive testing & ultrasonics N2 - Challenging new constructions and ageing infrastructure are increasing the demand for permanent monitoring of loads and condition. Various methods and sensors are used for this purpose. But the technologies available today have difficulties in detecting slowly progressing locally confined damages. Extensive investigations or instrumentations are required so far for this purpose. In this study we present new sensors and data processing methods for ultrasonic transmission, which can be used for non-destructive long term monitoring of concrete. They can be mounted during construction or thereafter. Larger volumes can be monitored by a limited number of sensors for changes of material properties. The principles of ultrasonic transmission and influencing factors are presented. This latter include load, damages as well as environmental parameters as temperature or moisture. Various methods for data processing, e. g. coda wave interferometry are introduced. They allow the detection of very small changes in the medium. The embedded sensors are shown including mounting and operation. Application examples so far include small scale laboratory freeze-thaw experiments, localizing loads in larger concrete models, monitoring load effects on real structures as well as detecting acoustic events. Some sensors are operating already for several years. The sensors can be used as transmitter or receivers or switched between both roles. While most of the previous experiments have been active (at least one sensor serving as transmitter), new studies show that the sensors are useful as well for passive measurements, e. g. in acoustic emission or time reversal experiments. Besides application in civil engineering our setups can also be used for model studies in geosciences. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - SHM KW - Monitoring KW - Ultrasound concrete KW - Embedded sensors PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-344652 UR - http://www.ndt.net/?id=18408 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -