TY - CONF A1 - Mech, A. A1 - Gaillard, C. A1 - Marvin, H. A1 - Wohlleben, W. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Friedrich, C. M. A1 - Brüngel, R. A1 - Rückert, J. A1 - Ghanem, A. A1 - Weigel, S. T1 - The NanoDefine Decision Framework and NanoDefiner e-Tool: a practical guide to the identification of nanomaterials N2 - The European Commission's recommendation on the definition of nanomaterial [2011/696/EU] is broadly applicable across different regulatory sectors and requires the quantitative size Determination of constituent particles in samples down to 1 nm. A material is a nanomaterial if 50 % or more of the particles are in the size range 1-100 nm. The implementation of the definition in a regulatory context challenges measurement methods to reliably identify nanomaterials and ideally also nonnanomaterials as substance or product ingredient as well as in various matrices. The EU FP7 NanoDefine project [www.nanodefine.eu] addressed these challenges by developing a robust, readily implementable and cost-effective measurement strategy to decide for the widest possible range of materials whether it is a nanomaterial or not. It is based on existing and emerging particle measurement techniques evaluated against harmonized, material-dependent performance criteria and by intra- and inter-lab comparisons. Procedures were established to reliably measure the size of particles within 1-100 nm, and beyond, taking into account different shapes, coatings and chemical compositions in industrial materials and consumer products. Case studies prove their applicability for various sectors, including food, pigments and cosmetics. A main outcome is the establishment of an integrated tiered approach including rapid screening (Tier 1) and confirmatory methods (tier 2), a decision support flow scheme and a user manual to guide end-users, such as manufacturers, in selecting appropriate methods. Another main product is the “NanoDefiner” e-Tool which implements the flow scheme in a user-friendly software and guides the user in a semi-automated way through the entire decision procedure. It allows a cost-effective selection of appropriate methods for material classification according to the EC's nanomaterial definition and provides a comprehensive report with extensive explanation of all decision steps to arrive at a transparent identification of nanomaterials as well as non-nanomaterials for regulatory purposes. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Definition of nanomaterial KW - Regulation PY - 2019 SN - 978-3-95606-440-1 SN - 0179-0609 VL - F-61 SP - 114 EP - 124 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a revision of the EC definition of nanomaterial based on analytical possibilities; updated N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of na-nomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2017 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services sci-ence-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In an earlier report1 key aspects of the EC NM Definition were addressed, with the goal to improve the implementability of the EC NM Definition. Based on further developments and results obtained in NanoDefine project that first report was updated and is presented here. The key aspects are discussed based on the results of four years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possibilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possi-bilities, according to the state of the art in 2017. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance: 'external dimension', ‘number based particle size distribution‘, ‘polydispersity‘ and ‘upper size limit‘, the term ‘particle’, the ‘means to prove that a material is not a nanomaterial‘ and ‘the role of the volume specific sur-face area (VSSA)‘, and "particulate materials'. KW - EU definition of a nanomaterial KW - Nanoparticles KW - Revision KW - Update 2017 PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-publications/nanodefine-technical-reports SP - D7.10, 1 EP - D7.10, 71 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a Revision of the EC Definition of Nanomaterial Based on Analytical Possibilities N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of nanomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2015 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services science-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In this report key aspects of the EC NM Definition are addressed, with the goal to improve the implement-ability of the EC NM Definition. These aspects are presented and discussed based on the results of two years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possi-bilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possibilities, according to the state of the art of mid-2015. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance:  The term ‘external dimension’. A clear definition of 'External dimension' should be included in the text of the EC NM definition and more precise guidance on what is considered as an external dimension and how to properly character-ise it should be provided.  The ‘number based particle size distribution‘. The EC NM Definition uses a threshold related to the number based size distribution of particles. Yet most of the easily available techniques provide a mass-, volume- or scattered light intensity-based size distribution which needs to be converted into a number based distribution to be used for regulatory pur-poses. A specific guidance on the conditions under which these methods can be used to identify a na-nomaterial by employing appropriate quantity or metrics conversion should be provided.  The ‘polydispersity‘ and ‘upper size limit‘ Polydispersity is a challenge for the measurement of particle size distribution for the EC NM definition, specifically for materials with high polydispersity index and broad size distribution especially when the volume or mass of the fraction containing particles below 100 nm is very small. Therefore a dedicated guidance should be provided that allows applying an upper size limit in measurements and particle statistics. KW - Nanomaterial KW - EU Definition of nanomaterial KW - Nanoparticles PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-432339 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D7.10.pdf SP - 1 EP - 68 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Zimathies, Annett A1 - Bianchin, A. A1 - Lecloux, A. A1 - Roebben, G. A1 - Rauscher, H. A1 - Gibson, N. T1 - Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial N2 - The VSSA approach has the important advantage over classifying, imaging and counting techniques that it does not involve dispersion protocols. Further, the BET technique as the basis for VSSA determination it is in widespread use, generates low costs and is specified for many commercial materials. Finally, the same equipment allows for a deeper analysis by full isotherm evaluation. The present deliverable assesses all NanoDefine powders, supplemented by further real-world materials (in total 26 powders), and quantitatively compares the relationship between the median size (by Electron Microscopy – considered as benchmark for the EC nanomaterial definition) vs. the size derived from VSSA. The VSSA method mitigates the challenges of EM to assess the thickness of platelets, but worked as well on fibbers and particles of irregular shapes. A screening strategy is proposed. If applied to the further data from real-world materials as validation set, this screening does achieve a correct classification, leaving only borderline materials for tier 2 assessment. KW - Nanomaterial KW - Classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-398938 SP - 1 EP - 26 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-39893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaillard, C. A1 - Mech, A. A1 - Wohlleben, W. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Weigel, S. A1 - Rauscher, H. T1 - A technique-driven materials categorisation scheme to support regulatory identification of nanomaterials N2 - Worldwide there is a variety of regulatory provisions addressing nanomaterials. The identification as nanomaterial in a regulatory context often has the consequence that specific legal rules apply. In identifying nanomaterials, and to find out whether nanomaterial-specific provisions apply, the external size of particles is globally used as a criterion. For legal certainty, its assessment for regulatory purposes should be based on measurements and methods that are robust, fit for the purpose and ready to be accepted by different stakeholders and authorities. This should help to assure the safety of nanomaterials and at the same time facilitate their international trading. Therefore, we propose a categorisation scheme which is driven by the capabilities of common characterisation techniques for particle size measurement. Categorising materials according to this scheme takes into account the particle properties that are most important for a determination of their size. The categorisation is exemplified for the specific particle number based size metric of the European Commission's recommendation on the definition of nanomaterial, but it is applicable to other metrics as well. Matching the performance profiles of the measurement techniques with the material property profiles (i) allows selecting the most appropriate size determination technique for every type of material considered, (ii) enables proper identification of nanomaterials, and (iii) has the potential to be accepted by regulators, industry and consumers alike. Having such a scheme in place would facilitate the regulatory assessment of nanomaterials in regional legislation as well as in international relations between different regulatory regions assuring the safe trade of nanomaterials. KW - Nanomaterial KW - Nanoparticles KW - Categorisation scheme KW - EC definition of a nanomaterial KW - Regulatory identification of nanomaterials PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471623 SN - 2516-0230 SP - 1 EP - 11 PB - The Royal Society of Chemistry AN - OPUS4-47162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -