TY - JOUR A1 - Rietsch, P. A1 - Witte, F. A1 - Sobottka, S. A1 - Germer, G. A1 - Becker, A. A1 - Güttler, Arne A1 - Sarkar, B. A1 - Paulus, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Diaminodicyanoquinones: Fluorescent dyes with high dipole moments and electron-acceptor properties JF - Angewandte Chemie Int. Ed. N2 - Fluorescent dyes are applied in various fields of research,includingsolarcellsandlight-emittingdevices,andas reporters for assays and bioimaging studies.Fluorescent dyes with an added high dipole moment pave the way to nonlinear optics and polarity sensitivity.Redox activity makes it possible to switch the moleculeQsphotophysical properties.Diaminodicyanoquinone derivatives possess high dipole moments,yet only lowfluorescence quantum yields,and have therefore been neglected as fluorescent dyes.Here we investigate the fluorescencepropertiesofdiaminodicyanoquinonesusingacombined theoretical and experimental approach and derive molecules with afluorescence quantum yield exceeding 90%. The diaminodicyanoquinone core moiety provides chemical versatility and can be integrated into novel molecular architectures with unique photophysical features. KW - Dipole moment KW - Fluorescence KW - Quantum yield KW - Quinones PY - 2019 DO - https://doi.org/10.1002/anie.201903204 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 24 SP - 8235 EP - 8239 PB - Wiley Online Libary CY - Weihnheim AN - OPUS4-48890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guday, G. A1 - Donskyi, Ievgen A1 - Gholami, M. F. A1 - Algara-Siller, G. A1 - Witte, F. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Paulus, B. A1 - Rabe, J. A1 - Adeli, M. A1 - Haag, R. T1 - Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization JF - Small N2 - A new method for top‐down, one‐pot, gram‐scale production of high quality nanographene by incubating graphite in a dilute sodium hypochlorite solution at only 40 °C is reported here. The produced sheets have only 4 at% oxygen content, comparable with nanographene grown by chemical vapor deposition. The nanographene sheets are covalently functionalized using a nondestructive nitrene [2+1] cycloaddition reaction that preserves their π‐conjugated system. Statistical analyses of Raman spectroscopy and X‐ray photoelectron spectroscopy indicate a low number of sp3 carbon atoms on the order of 2% before and 4% after covalent functionalization. The nanographene sheets are significantly more conductive than conventionally prepared nanographene oxide, and conductivity further increases after covalent functionalization. The observed doping effects and theoretical studies suggest sp2 hybridization for the carbon atoms involved in the [2+1] cycloaddition reaction leading to preservation of the π‐conjugated system and enhancing conductivity via n‐type doping through the bridging N‐atom. These methods are easily scalable, which opens the door to a mild and efficient process to produce high quality nanographenes and covalently functionalize them while retaining or improving their physicochemical properties. KW - Graphene KW - XPS KW - NEXAFS PY - 2019 DO - https://doi.org/10.1002/smll.201805430 VL - 15 IS - 12 SP - 1805430 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores JF - Physical chemistry chemical physics: PCCP N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Sinha, S. A1 - Krappe, A. A1 - Joswig, J.-O. A1 - Götze, J. P. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Fluorescence Quenching in J‑Aggregates through the Formation of Unusual Metastable Dimers JF - The Journal of Physical Chemistry N2 - Molecular aggregation alters the optical properties of a system as fluorescence may be activated or quenched. This is usually described within the well-established framework of H- and J-aggregates. While H-aggregates show nonfluorescent blueshifted absorption bands with respect to the isolated monomer, Jaggregates are fluorescent displaying a redshifted peak. In this publication, we employ a combined approach of experiment and theory to study the complex aggregation features and photophysical properties of diaminodicyanoquinone derivatives, which show unusual and puzzling nonfluorescent redshifted Absorption bands upon aggregation. Our theoretical analysis demonstrates that stable aggregates do not account for the experimental observations. Instead, we propose an unprecedented mechanism involving metastable dimeric species formed from stable dimers to generate nonfluorescent J-aggregates. These results represent a novel kind of aggregation-induced optical effect and may have Broad implications for the photophysics of dye aggregates. KW - Fluorescence KW - Llifetime KW - Dye KW - Quantum yield KW - Label KW - Reporter KW - Aggregation KW - Monomer KW - Heory KW - Mechanism KW - photophysics PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.1c01600 SN - 1520-5207 VL - 125 IS - 17 SP - 4438 EP - 4446 PB - ACS Publikations AN - OPUS4-52619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -