TY - JOUR A1 - Léonard, Fabien A1 - Stein, J. A1 - Soutis, C. A1 - Withers, P. J. T1 - The quantification of impact damage distribution in composite laminates by analysis of X-ray computed tomograms N2 - One of the great strengths of X-ray computed tomography over conventional inspection methods (ultrasound, thermography, radiography) is that it can image damage in 3D. However for curved ordeformed composite panels it can be difficult to automatically ascribe the damage to specific plies or inter-ply interfaces. An X-ray computed tomography (CT) data processing methodology is developed to extract the through-thickness distribution of damage in curved or deformed composite panels. The method is applied to [(0°/90°)2]s carbon fibre reinforced polymer (CFRP) panels subjected low velocity impact damage (5 J up to 20 J) providing 3D ply-by-ply damage visualisation and analysis. Our distance transform approach allows slices to be taken that approximately follow the composite curvature allowing the impact damage to be separated, visualised and quantified in 3D on a ply-by-ply basis. In this way the interply delaminations have been mapped, showing characteristic peanut shaped delaminations with the major axis oriented with the fibres in the ply below the interface. This registry to the profile of the panel constitutes a significant improvement in our ability to characterise impact damage in composite laminates and extract relevant measurements from X-ray CT datasets. KW - Delamination KW - Impact behaviour KW - Non-destructive testing KW - X-ray computed tomography KW - Distance transform PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0266353817307157?via%3Dihub U6 - https://doi.org/10.1016/j.compscitech.2017.08.034 SN - 0266-3538 SN - 1879-1050 VL - 152 SP - 139 EP - 148 PB - Elsevier Ltd. AN - OPUS4-42556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daly, M. A1 - Burnett, T. L. A1 - Pickering, E. J. A1 - Tuck, O. C. G. A1 - Léonard, Fabien A1 - Kelley, R. A1 - Withers, P. J. A1 - Sherry, A. H. T1 - A multi-scale correlative investigation of ductile fracture N2 - The use of novel multi-scale correlative methods, which involve the coordinated characterisation of matter across a range of length scales, are becoming of increasing value to materials scientists. Here, we describe for the first time how a multi-scale correlative approach can be used to investigate the nature of ductile fracture in metals. Specimens of a nuclear pressure vessel steel, SA508 Grade 3, are examined following ductile fracture using medium and high-resolution 3D X-ray computed tomography (CT) analyses, and a site-specific analysis using a dual beam plasma focused ion beam scanning electron microscope (PFIB-SEM). The methods are employed sequentially to characterise damage by void nucleation and growth in one volume of interest, allowing for the imaging of voids that ranged in size from less than 100 nm to over 100 mm. This enables the examination of voids initiated at carbide particles to be detected, as well as the large voids initiated at inclusions. We demonstrate that this multi-scale correlative approach is a powerful tool, which not only enhances our understanding of ductile failure through detailed characterisation of microstructure, but also provides quantitative information about the size, volume fractions and spatial distributions of voids that can be used to inform models of failure. It isfound that the vast majority of large voids nucleated at MnS inclusions, and that the volume of a void varied according to the volume of its initiating inclusion raised to the power 3/2. The most severe voiding was concentrated within 500 mm of the fracture surface, but measurable damage was found to extend to a depth of at least 3 mm. Microvoids associated with carbides (carbide-initiated voids) were found to be concentrated around larger inclusion-initiated voids at depths of at least 400 mm. Methods for quantifying X-ray CT void data are discussed, and a procedure for using this data to calibrate parameters in the Gurson-Tvergaard Needleman (GTN) model for ductile failure is also introduced. KW - Gurson model KW - SA508 KW - Correlative tomography KW - Void nucleation & growth KW - X-ray computed tomography PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-414547 UR - http://www.sciencedirect.com/science/article/pii/S1359645417302203?via%3Dihub VL - 130 SP - 56 EP - 68 PB - Elsevier AN - OPUS4-41454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hernández-Nava, E. A1 - Tammas-Williams, S. A1 - Smith, C. A1 - Léonard, Fabien A1 - Withers, P. J. A1 - Todd, I. A1 - Goodall, R. T1 - X-ray tomography characterisation of lattice structures processed by selective electron beam melting N2 - Metallic lattice structures intentionally contain open porosity; however, they can also contain unwanted closed porosity within the structural members. The entrained porosity and defects within three different geometries of Ti-6Al-4V lattices, fabricated by Selective Electron Beam Melting (SEBM), is assessed from X-ray computed tomography (CT) scans. The results suggest that horizontal struts that are built upon loose powder show particularly high (~20 x 10⁻³ vol %) levels of pores, as do nodes at which many (in our case 24) struts meet. On the other hand, for struts more closely aligned (0° to 54°) to the build direction, the fraction of porosity appears to be much lower (~0.17 x 10⁻³%) arising mainly from pores contained within the original atomised powder particles. KW - Cellular solids KW - Aqdditive manufacturing KW - Computed tomography KW - Titanium alloys PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-413689 UR - http://www.mdpi.com/2075-4701/7/8/300 SN - 2075-4701 VL - 7 IS - 8 SP - Article 300, 1 EP - 12 PB - MDPI AN - OPUS4-41368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -