TY - CONF A1 - Völzke, Holger A1 - Wille, Frank A1 - Wieser, Günter A1 - Quercetti, Thomas T1 - Transport and Storage Cask Safety Assessment - Drop Tests and Numerical Calculations T2 - Waste Management Symposium 2006 CY - Tucson, Az. USA DA - 2006-02-26 KW - Transportbehälter KW - Lagerbehälter KW - Radioaktive Stoffe KW - Fallversuch KW - FEM KW - Sicherheit PY - 2006 SP - 12 pages CY - Tucson AN - OPUS4-12536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus Wilhelm A1 - Wille, Frank T1 - Pressure build-up during the fire test in type B(U) packages containing water - 13280 T2 - WM2013 Conference CY - Phoenix, Arizona, USA DA - 2013-02-24 KW - Fire test KW - B(U) KW - Thermal test KW - Pressure KW - Water PY - 2013 SN - 978-0-9836186-2-1 SP - 1 EP - 12(?) CY - Phoenix, Arizona, USA AN - OPUS4-27997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bletzer, Claus Wilhelm A1 - Nehrig, Marko A1 - Feldkamp, Martin A1 - Wille, Frank A1 - Völzke, Holger T1 - Druckaufbau in Behältern mit feuchtem Inventar T2 - KONTEC 2013 - 11. Internationales Symposium 'Konditionierung radioaktiverBetriebs- und Stilllegungsabfälle' CY - Dresden, Germany DA - 2013-03-13 KW - Druckaufbau KW - Radioaktive Abfälle KW - Endlager PY - 2013 IS - Sektion 4 / Vortrag 031 SP - 1 EP - 11(?) AN - OPUS4-28094 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bletzer, Claus Wilhelm A1 - Nehrig, Marko A1 - Feldkamp, Martin A1 - Wille, Frank A1 - Völzke, Holger T1 - Pressure build up in casks containing wet waste T2 - KONTEC 2013 - 11. Internationales Symposium 'Konditionierung radioaktiverBetriebs- und Stilllegungsabfälle' CY - Dresden, Germany DA - 2013-03-13 KW - Pressure build up KW - Radioactive waste KW - Disposal PY - 2013 IS - Sektion 4 / Vortrag 031 SP - 1 EP - 10(?) AN - OPUS4-28095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Mechanical Behaviour of High Burn-Up SNF under Normal and Accident Transport Conditions - Present Approaches and Perspectives T2 - PSAM 11 CY - Helsinki, Finland DA - 2012-06-25 PY - 2012 AN - OPUS4-26171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Sterthaus, Jens T1 - Regelwerksentwicklung für die Auslegung von lastanschlagpunkten T2 - 3. RAM-Behältersicherheitstage 2012, BAM CY - Berlin, Germany DA - 2012-03-22 PY - 2012 AN - OPUS4-26172 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Requirements on Transport Packages after Interim Storage - Current Approach and Perspectives T2 - RamTransport 2012, 9th International Conference on Radidoactive Material Transport and Storage CY - London, England DA - 2012-05-23 PY - 2012 AN - OPUS4-26173 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Bletzer, Claus Wilhelm A1 - Wille, Frank T1 - Safety assessment aspects of type B(U) packages containing wet intermediate level waste T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 KW - Radioactive materials KW - Safety assessment KW - Pressure build-up KW - Wet intermediate level waste PY - 2012 SP - 1 EP - 7(?) AN - OPUS4-26314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Günther, U. A1 - Ballheimer, Viktor A1 - Linnemann, Konrad A1 - Wille, Frank A1 - Droste, Bernhard T1 - Experiences by German authority with safety case approach for welding seams as part of SNF transport package containments N2 - Federal Institute for Materials Research and Testing (BAM) is the responsible authority for the assessment of mechanical and thermal safety as well as quality issues within the licensing procedure for transport casks for radioactive materials. The assessment includes a brittle fracture analysis of all relevant cask components. For cask bodies where a steel bottom is welded to a steel shell, specimens for testing of sufficient fracture resistance can normally not be extracted directly from the welding seam area of the cask. Therefore, a methodology has to be developed to ensure compliance with the safety analysis considerations and the approved design specification. This paper describes such a methodology including brittle fracture analysis and de-termination of required material properties as well as aspects of quality assurance during manufacturing. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 PY - 2012 IS - Session 4.2 RAM 18 SP - 1 EP - 6 AN - OPUS4-26344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Mechanical behaviour of high burn-up SNF under normal and accident transport conditions - present approaches and perspectives N2 - Transport packages for spent fuel have to meet the International Atomic Energy Agency requirements for different transport conditions. Physical state of spent fuel and fuel rod cladding as well as geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. In this paper, the mechanical behaviour of high burn-up spent fuel assemblies under transport conditions is analysed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods (fine cracks or complete breakage), which can cause release of gas, volatiles, fuel particles or fragments have to be properly considered in these assumptions. In view of the complexity of interactions between the fuel rods as well as between fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally. In this context some practical approaches based on experiences of BAM Federal Institute for Material Research and Testing within safety assessment of packages for transport of spent fuel are discussed. T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 15.07.2012 KW - Fuel rods KW - High burn-up KW - Mechanical behaviour KW - Transport conditions PY - 2012 SP - PVP2012-78302, 1-7 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Bletzer, Claus Wilhelm A1 - Wille, Frank T1 - Pressure build-up inside packages containing wet intermediate level radioactive waste due to thermal loads T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 2012-07-15 KW - Radioactive material KW - Pressure build-up KW - Wet intermediate level waste PY - 2012 SP - PVP2012-78282, 1-6 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Wille, Frank T1 - Methodological aspects for finite element modeling of lid systems for type B(U) transport packages N2 - The regulatory compliance of the containment system is of essential importance for the assessment process of Type B(U) transport packages. The requirements of the IAEA safety standards for transport conditions implies high loading on the containment system. The integrity of the containment system has to be ensured in mechanical and thermal tests. The containment system of German SNF and HLW transport packages usually includes bolted lids with metal gaskets. The finite element (FE) method is recommended for the analysis of lid systems according to the guideline BAM-GGR 012 for assessment of bolted lid and trunnion systems. FE analyses provide more accurate and detailed information about loading and deformation of such kind of structures. The results allow the strength assessment of the lid and bolts as well as the evaluation of relative displacements between the lid and the cask body in the area of the gasket groove. This paper discusses aspects concerning FE simulation of lid systems for Type B(U) packages for the transport of SNF and HLW. The work is based on the experiences of BAM Federal Institute for Materials Research and Testing as the German competent authority for the mechanical design assessment of such kind of packages. The issues considered include modeling strategies, analysis techniques and the interpretation of results. A particular focus of this paper is on the evaluation of the results with regard to FE accuracy, influence of the FE contact formulation and FE modeling techniques to take the metallic gasket into account. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 PY - 2012 IS - Paper 2.2 RAM 27 SP - 1 EP - 8 AN - OPUS4-26353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Kiyak, Yusuf A1 - Wille, Frank A1 - Zerbst, Uwe A1 - Weber, Mike A1 - Klingbeil, Dietmar T1 - Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 2012-07-15 PY - 2012 SP - PVP2012-78213, 1-7 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Neumeyer, Tino A1 - Wille, Frank A1 - Droste, Bernhard T1 - Mechanical/thermal package design safety assessment and manufacturing quality assurance of spent fuel transport cask NCS 45 T2 - WM2010 - 36th Annual radioactive waste management symposium CY - Phoenix, Arizona, USA DA - 2010-03-07 KW - Package design KW - Spent fuel transport cask KW - Safety assessment PY - 2010 SN - 978-0-9828171-0-0 SP - 1 EP - 13 CY - Tempe, AZ, USA AN - OPUS4-24344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Komann, Steffen T1 - Mechanical assessment criteria of spent fuel assemblies basket design N2 - Packages for the transport of radioactive material are generally equipped with specific structures (basket) to support the radioactive content in defined position. The safety function of the basket depends on the kind of transported inventory. In case of transport cask for spent fuel, the basket design has to ensure the subcriticality of the fissile material in all conditions of transport in particular. Therefore the evaluation of structural integrity and neutron absorption capability of the basket is an important part of complete safety analysis. Sufficient heat transfer to maintain fuel assembly and cask temperature within allowable limits has to be verified as well. Corrosion resistance is an additional requirement on basket materials owing to contact with water during loading and unloading operations. Computational and experimental methods or their combination along with additional material and component tests can be used to analyse the mechanical and thermal basket behaviour under transport conditions defined in IAEA regulations. By deciding between the analysis methods, the design features (including material selection concept) as well as specific safety function should be accounted. In approval procedures of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM. Some questions of safety evaluation of basket designs are discussed in this paper based on the BAM experience within approval procedures. The paper focuses primarily on the mechanical behaviour of baskets with regard to the assumptions that have to be used in the criticality safety demonstration. The state of the art methodologies for computational basket stress and deformation analysis as well as for interpretation of drop tests results are presented. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Transport conditions KW - Spent fuel assemblies KW - Basket design PY - 2010 SP - 1 EP - 7 (Thursday T36/92) AN - OPUS4-24345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Approach for a finite element material model for wood for application in mechanical safety cases of transport packages N2 - BAM Federal Institute for Materials Research and Testing is the competent authority for mechanical safety assessment of transport packages for radioactive material in Germany. The further development of state-of-the-art technology concerning assessment methods is essential for a qualified work of involved designers and authority experts. The paper gives an example of current development done to improve understanding and modeling capabilities of wood filled impact limiter. In order to reduce the loads applied to the package containment, which result from regulatory drop tests, most packages are protected by energy dissipating impact limiter. Wood, encapsulated by steel sheets, is one of the materials typically used for energy dissipation in these impact limiter. Very often, mechanical safety cases regarding the 9 m drop test are performed computationally, where it is essential to use reliable and verified computational methods and models. In this context, the paper presents an approach for a finite element material model for wood. Thereby, the mechanical behavior of wood under compression loading is the focus of the development work. Additionally, material orientation as well as strain rate, temperature and lateral constraint may vary. A large number of experiments, particularly compression tests, was designed and performed to establish an adequate experimental database for modeling verification. The experimental results enabled the derivation of necessary requirements: The material model has to take into account strain rate and temperature dependencies as well as the anisotropic characteristics of the material, a proper yield criterion, flow rule and hardening law. Such a material model is currently not available in established commercial dynamic finite element codes. Thus it is necessary to create a user-defined material model considering the mentioned requirements. A first step was done by determining a yield surface as well as detecting flow and hardening mechanisms from experimental force-deflection curves. In a next step the LS-DYNA material model MAT_75 was altered according to conclusions of former BAM development work, regarding the modeling of post-peak softening as a function of lateral constraint. Future research will contain the further development, implementation and verification of a material model for wood. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Impact limiter KW - Material model wood KW - Transport package PY - 2011 SP - 1 EP - 8 AN - OPUS4-24236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehrig, Marko A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Masslowski, Jörg-Peter A1 - Droste, Bernhard A1 - Pope, R. T1 - Historical view and experiences with crush test for light weight packages N2 - The crush test for light weight and low density type B packages was introduced for the first time into the 1985 edition of the International Atomic Energy Agency (IAEA) transport safety regulations. In the early 1970s, the need for an additional mechanical test besides or instead of the well known 9 m drop test was deliberated. Various authors and test facilities, including BAM and Sandia National Laboratories (SNL), were able to prove that the level of safety provided by IAEA drop and puncture tests in the regulations did not protect against dynamic crush forces to smaller packages. As early as the third PATRAM symposium held in 1971 (Richland, WA, USA), Robert F. Barker asked for '... a more strenuous crushing test for protecting small, light weight packages ...' BAM developed from research activities a proposal as to which types of packages should be subject to crush tests and how the crush tests should be performed, which was presented at the 5th PATRAM symposium held in 1978 (Las Vegas, NV, USA). At the IAEA, the possible need for a crush test was first mentioned in 1977. The subject for a discussion, besides the principal need for this test, was also the development of suitable set of crush test boundary conditions. It took more than four years of discussion until a dynamic crush test similar to today's test was recommended by experts to the IAEA regulatory revision panel. Finally, after a rigorous evaluation process in which also the boundary conditions were determined, the crush test was proposed to be incorporated into the IAEA regulations. BAM and SNL participated in the crush test development and implementation process right from the beginning in the early 1970s until its implementation in the IAEA regulations in 1985. Today, BAM performs crush test procedures according to para. 727(c) of TS-R-1, which have not been changed since their first implementation. Crush tests performed in 2002 at BAM will be discussed. These approval design tests were performed on birdcage pellet transport containers under normal and accident conditions according to the IAEA regulations. KW - Package testing KW - Crush testing KW - Regulations PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000016 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 3 SP - 125 EP - 129 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-25349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Kiyak, Yusuf A1 - Wille, Frank A1 - Zerbst, Uwe A1 - Weber, Mike A1 - Klingbeil, Dietmar T1 - Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages N2 - In the approval procedure of transport packages for radioactive materials, the mechanical and thermal safety assessment is carried out in Germany by competent authority BAM. In recent years BAM was involved in several licensing procedures of new spent fuel and HLW package designs, where the cask body was made of Ductile Cast Iron (DCI). According to IAEA regulations package designs have to fulfill requirements for specific conditions of transport. Type B(U) packages must withstand the defined accident conditions of transport. The temperature range from -40°C up to the operational temperature has to be considered. For the cask material DCI, it is necessary to determine the brittle fracture behavior. The German guideline BAM-GGR 007 defines requirements for the fracture mechanics of DCI. Due to complex structure of the cask body and the dynamic loading a fracture mechanical assessment in an analytical kind is not always possible. Experience of recent design approval procedures show that the application of numerical calculations are applicable to determine the fracture mechanical load in the cask body. At the first step a numerical analysis has to be done to identify the loading state at the whole cask body. Secondly an analysis of a detail of the cask body is made considering the displacement boundary conditions of the global model. An artificial flaw is considered in this detailed model to calculate the fracture mechanical loading state. The finite element mesh was strongly refined in the area of flaw. The size of the artificial flaw is characterized by the ultrasonic inspection used for the quality assurance of the package. The applicant developed additional analysis tools for calculation of stress intensity factor and/or J-Integral. The assessment approach by BAM led to the decision to develop own tools to the possibility for independent check of the results. The paper describes the authority assessment approach for the DCI fracture mechanics analysis. The validation procedure incl. the development of own tools is explained. BAM developed a post-processor called JINFEM to determine the fracture mechanical loads. The regulatory 1 m puncture bar drop test is used to give an example of the assessment procedure. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Mechanische Bewertung KW - Radioaktives Material KW - Numerische Analyse KW - Bruchmechanik PY - 2011 SP - 1 EP - 10 AN - OPUS4-25022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood - influence on mechanical behavior of wood filled impact limiter and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood’s mechanical properties. Using wood as an energy absorber in impact limiter of packages for the transport of radioactive material, it is of particu-lar importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in-situ applicability, accuracy and effort. The results of an experimental ana-lysis of the accuracy of hand-held moisture meters using the electrical resistance method are discussed. Conclu-sions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete im-pact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiter are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak-tightness are addressed. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 KW - Mechanical behavior of wood KW - Moisture content KW - Impact limiter PY - 2012 IS - 4.4 RAM 30 SP - 1 EP - 11 AN - OPUS4-26241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Schubert, Sven A1 - Eisenacher, Germar A1 - Wille, Frank T1 - Material characterization and modeling within safety analysis of packages for transport of radioactive material T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 2012-07-15 PY - 2012 SP - PVP2012-78297, 1-6 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Droste, Bernhard T1 - Suggestions for correct performance of IAEA 1 m puncture bar drop test with reduced scale packages considering similarity theory aspects T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Similarity theory KW - Puncture bar drop test KW - Reduced scale packages KW - Drop height adaption PY - 2007 U6 - https://doi.org/10.1179/174651007X191233 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 18 IS - 2 SP - 111 EP - 116 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-15891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Droste, Bernhard T1 - Suggestion for correct performance of IAEA 1 m puncture bar drop test with reduced-scale packages considereing similarity aspects T2 - PATRAM 2007 CY - Miami, FL, USA DA - 2007-10-21 PY - 2007 AN - OPUS4-15896 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Droste, Bernhard A1 - Wille, Frank T1 - Using Scale Model Impact Limiter in the Type Assessment of Transport Casks for Radioactive Material T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Impact limiter KW - Similarity KW - Scaling PY - 2007 IS - (Abstract # 86) SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-17495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Estimation of cask deceleration and impact limiter deformation under 9m drop test conditions using the calculation tool “ImpactCalc” T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Impact limiter KW - Calculation KW - Maximum deceleration KW - Maximum deformation PY - 2007 SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-17496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Scale model impact limiter in type assessment of radioactive material transport packages KW - Impact limiter KW - Shock absorber KW - Scaling KW - Radioactive KW - Material KW - Transport KW - Cask PY - 2008 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 1 SP - 53 EP - 57 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-17498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Martin A1 - Wille, Frank A1 - Ballheimer, Viktor T1 - Approximation of package deceleration and shock absorber deformation under 9 m drop test conditions using simplified numerical tool ImpactCalc KW - Impact limiter KW - Calculation KW - Maximum deceleration KW - Maximum deformation PY - 2008 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 1 SP - 35 EP - 40 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-17499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Koch, Frank A1 - Schubert, Sven T1 - State-of-the-art assessment of package design safety analyses T2 - PATRAM 2007 The 15th International Symposium on the Packaging and Transportation of Radioactive Material CY - Miami, FL, USA DA - 2007-10-21 PY - 2007 AN - OPUS4-16014 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Koch, Frank A1 - Komann, Steffen T1 - Design assessment of spent fuel and HLW transport casks T2 - 49. INMM-Konferenz CY - Nashville, TN, USA DA - 2008-07-13 PY - 2008 AN - OPUS4-17759 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Koch, Frank A1 - Komann, Steffen T1 - Design assessment of spent fuel and HLW Transport Casks T2 - 49th INMM Annual Meeting, July 13-17, 2008 CY - Nashville, USA DA - 2008-07-13 KW - Safety Analysis KW - Transport Packages KW - Drop tests KW - Finite Element Analysis KW - Thermal Design KW - Containment KW - Quality Management PY - 2008 SP - 1 EP - 8 AN - OPUS4-17780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Wille, Frank A1 - Rittscher, D. T1 - Mechanical assessment of large nuclear power plant components in transport licensing T2 - 49th INMM Annual Meeting CY - Nashville, TN, USA DA - 2008-07-13 KW - Rückbau KW - Kerntechnische Anlagen KW - Großkomponenten KW - Transport KW - Mechanik PY - 2008 SP - 1 EP - 8 AN - OPUS4-18440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Mechanical safety assessment with regards to reduced-scale model testing - accompanying material / component tests and numerical calculations T2 - US NRS/BAM Workshop CY - Rockville, MD, USA DA - 2007-10-18 PY - 2007 AN - OPUS4-16231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Kernbrennstoffkreislauf - Ver- und Entsorgung deutscher Kernkraftwerke T2 - Blockseminar "Strucktur der Materie - Kernphysik", TFH Wildau CY - Wildau, Germany DA - 2008-06-17 PY - 2008 AN - OPUS4-17545 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Droste, Bernhard T1 - Suggestions for correct performance of IAEA 1 m puncture bar drop test with reduced-scale packages considering similarity theory aspects T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Similarity KW - Puncture Bar Drop Test KW - Scale Models KW - IAEA Regulations PY - 2007 IS - CD-ROM SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-16104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Koch, Frank A1 - Schubert, Sven A1 - Komann, Steffen T1 - State-of-the-art assessment of package design safety analyses T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Transportation of radioactive materials KW - Safety KW - Design assessment KW - Mechanical tests KW - Thermal tests KW - Drop tests KW - Numerical calculations KW - Quality assurance PY - 2007 SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-16105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Neumann, Martin A1 - Wille, Frank ED - Topping, B. H. V. ED - M. Papadrakakis, T1 - Simulation of the Crushing of Wood Filled Impact Limiters for Packages of Radioactive Material N2 - Mechanical and thermal safety assessment of packages for transport of radioactive material in Germany is carried out by the Federal Institute for Materials Research and Testing (BAM). Both experimental and computational (analytical, numerical) methods combined with material and/or component tests are the basis for the state of the art safety assessment concept at BAM. The required mechanical tests according to IAEA regulations include, among others, a 9-m-drop-test on an unyielding target. Impact limiting components, which are attached to the cask at both ends, limit forces applied on the cask body and lid system by absorbing a major part of the impact energy. In Germany, impact limiters of packages for transport of radioactive materials are typically of steel-wood-sandwich construction, combining a relatively stiff steel structure bolted to the cask body, outer steel plates and different types of wood. By crushing the wood-steel-sandwich-structure between an unyielding target and the cask, the kinetic energy of a 9-m-free-fall is absorbed. The main energy absorber is wood under a high level of deformation. Wood under large deformations exhibits destruction of the fibre matrix. By analysing compression of the impact limiter wood after the drop tests with prototype casks for radioactive material, underlying mechanisms of wood crushing and corresponding energy absorption under large deformations are identified. Softening occuring at compression of the wood is a function of the lateral strain restriction of wood. Against the background of continuum mechanics an analogous model for compression of the fibre bundle is presented. The model takes the lateral strain restriction as triaxiality of the stress state into account. Further modelling possibilities for wood with a continuum approach are described. Different material laws in the explicit finite element code LS-DYNA are analysed for possible application using the analogous model for the fibre bundle. Small scale compression tests with wooden specimens are modelled in order to evaluate the ability of different modelling techniques to simulate softening. Although modelling of the compression of wood under large deformations is possible, softening could not be simulated purposefully. A drop test of a cask with impact limiting devices similar to existing impact limiters is simulated with different material laws for wood. The behaviour of impact limiting devices could not be simulated universally including the influence of the lateral strain restriction; nevertheless loading of the cask by crushing of the impact limiter could be simulated purposefully. Verification with experimental results is essential. T2 - 9th International Conference on Computational Structures Technology CY - Athens, Greece DA - 2008-09-02 KW - Radioactive material KW - Transport KW - Impact limiter KW - Simulation KW - FEM PY - 2008 SN - 978-1-905088-22-5 IS - Paper 22 SP - 1 EP - 21 PB - Civil Comp Press CY - Stirlingshire, Scotland, UK AN - OPUS4-17891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood: influence on mechanical behaviour of wood filled impact limiters and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood's mechanical properties. Using wood as an energy absorber in impact limiters of packages for the transport of radioactive material, it is of particular importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in situ applicability, accuracy and effort. The results of an experimental analysis of the accuracy of hand held moisture metres using the electrical resistance method are discussed. Conclusions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete impact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiters are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak tightness are addressed. KW - Electrical resistance method KW - Impact limiter KW - Moisture content KW - Moisture metre KW - Wood PY - 2012 U6 - https://doi.org/10.1179/1746510913Y.0000000023 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 179 EP - 185 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rolle, Annette A1 - Droste, Bernhard A1 - Schubert, Sven A1 - Probst, Ulrich A1 - Wille, Frank T1 - Verification of activity release compliance with regulatory limits within spent fuel transport cask assessment N2 - Admissible limits for activity release from type B(U) packages for spent fuel transport specified in the International Atomic Energy Agency regulations (10-6 A2 h-1 for normal conditions of transport and A2 per week for accidental conditions of transport) have to be kept by an appropriate function of the cask body and its sealing system. Direct measurements of activity release from the transport casks are not feasible. Therefore, the most common method for the specification of leak tightness is to relate the admissible limits of activity release to equivalent standardised leakage rates. Applicable procedure and calculation methods are summarised in the International Standard ISO 12807 and the US standard ANSI N14·5. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. Two fundamental aspects in the assessment are the specification of conservative design leakage rates for normal and accidental conditions of transport and the determination of release fractions of radioactive gases, volatiles and particles from spent fuel rods. Design leakage rates identify the efficiency limits of the sealing system under normal and accidental transport conditions and are deduced from tests with real casks, cask models or components. The releasable radioactive content is primarily determined by the fraction of rods developing cladding breaches and the release fractions of radionuclides due to cladding breaches. The influence of higher burn-ups on the failure probability of the rods and on the release fractions are important questions. This paper gives an overview about methodology of activity release calculation and correlated boundary conditions for assessment. KW - Containment compliance KW - Seals KW - Regulations KW - Activity release PY - 2012 U6 - https://doi.org/10.1179/1746510913Y.0000000012 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 149 EP - 152 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Aktuelle Aspekte der sicherheitstechnischen Nachweisführung bei der gefahrgutrechtlichen Bauartprüfung T2 - 1. RAM-Behältersicherheitstage 2009 CY - Berlin-Horstwalde, Germany DA - 2009-03-26 PY - 2009 AN - OPUS4-19179 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank T1 - Modelling of compression of wood filled impact limiter of casks for transportation of radioactive material N2 - Impact limiters of packages for transport of radioactive materials are in Germany typically steel-wood-sandwich-constructions, combining a relatively stiff steel structure bolted to the cask body, outer steel plates and different types of wood. By crushing the wood-steel-sandwich-structure between unyielding target and cask, kinetic energy of 9-m-free-fall is absorbed. Main energy absorber is wood under a high level of deformation. Wood under large deformations exhibits destruction of the fibre matrix. By analysing compression of impact limiter wood after drop tests with prototype casks for radioactive material, underlying mechanisms of wood crushing and corresponding energy absorption under large deformations are identified. Softening occurring at compression of wood is a function of lateral strain restriction of wood. Against the background of continuum mechanics an analogous model for compression of fibre bundle is presented. The model takes lateral strain restriction as triaxiality of stress state into account. Further modelling possibilities for wood with a continuum approach are described. Different material laws in the explicit Finite Element code LS-DYNA are analysed for possible application on the analogous model for the fibre bundle. Small scale compression tests with wooden specimens were modelled in order to evaluate the ability of different modelling techniques to simulate softening. Although modelling of compression of wood under large deformations is possible, softening could not be simulated purposefully. A drop test of a cask with impact limiting devices similar to existing impact limiters is simulated with different material laws for wood. Behaviour of impact limiting devices could not be simulated universally including influence of lateral strain restriction; nevertheless loading of the cask by crushing of impact limiter could be simulated purposefully. Verification with experimental results is compulsory. T2 - Ramtransport 09 - 8th International Conference on radioactive materials transport 2009 CY - Manchester, Great Britain DA - 2009-05-12 KW - Radioactive material KW - Transport KW - Impact limiter KW - Simulation KW - FEM PY - 2009 IS - PAP31 SP - 1 EP - 20 AN - OPUS4-19751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sterthaus, Jens A1 - Ballheimer, Viktor A1 - Droste, Bernhard A1 - Koch, Frank A1 - Probst, Ulrich A1 - Völzke, Holger A1 - Wille, Frank T1 - Analysis of bolted flange joints for lids of packages for radioactive materials T2 - ASME 2009 Pressure vessels and piping conference CY - Prague, Czech Republic DA - 2009-07-26 KW - Bolted flange joints KW - FEA KW - Modelling of gaskets KW - Assessment of leak tightness KW - Results from experiments PY - 2009 SP - PVP2009-77284, 1-8 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-19786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Musolff, André T1 - Numerische Analyse der 1-m-Fallprüfung auf einen Stahldorn T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Deutschland DA - 2010-05-04 KW - IAEO KW - 1-m-Fallprüfung KW - Stahldorn KW - Numerische Analyse KW - Verifizierung PY - 2010 IS - Sektion 5 / 505 SP - 1 EP - 5 CY - Berlin AN - OPUS4-21292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Zencker, Uwe A1 - Komann, Steffen T1 - Reflektion der verkehrsrechtlichen Bauartprüfung des CASTOR HAW 28M aus Sicht der zuständigen Behörde T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Germany DA - 2010-05-04 PY - 2010 AN - OPUS4-21321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Wille, Frank T1 - Transport of large nuclear power plant components: experiences in mechanical design assessment N2 - In the course of decommissioning of power plants in Germany large nuclear components (steam generator, reactor pressure vessel) must be transported over public traffic routes to interim storage facilities, where they are dismantled or stored temporarily. Since it concerns surface contaminated objects or low specific activity materials, a safety evaluation considering the IAEA transport regulations mainly for industrial packages (type IP-2) is necessary. For these types of industrial packages the requirements from normal transport conditions are to be covered for the mechanical proof. For example, a free drop of the package from a defined height, in dependence of its mass, onto an unyielding target, and a stacking test are required. Since physical drop tests are impossible generally due to the singularity of such 'packages', a calculation has to be performed, preferably by a complex numerical analysis. The assessment of the loads takes place on the basis of local stress distributions, also with consideration of radiation induced brittleness of the material and with consideration of recent scientific investigation results. Large nuclear components have typically been transported in an unpackaged manner, so that the external shell of the component provides the packaging wall. The investigation must consider the entire component including all penetration areas such as manholes or nozzles. According to the present IAEA regulations the drop position is to be examined, which causes the maximum damage to the package. In the case of a transport under special arrangement a drop only in an attitude representing the usual handling position (administratively controlled) is necessary. If dose rate values of the package are higher than maximum allowable values for a public transport, then it is necessary that additional shielding construction units are attached to the large component. KW - Radioactive material KW - Large components KW - Decommissioning KW - Nuclear power plant KW - Mechanical assessment KW - Numerical analysis PY - 2009 U6 - https://doi.org/10.1179/174650909X12543085665266 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 20 IS - 4 SP - 149 EP - 153 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-20820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Nehrig, Marko T1 - History of Implementation of Crush-Test to IAEA Regulations T2 - ASME Pressure Vessels and Piping Conference 2009 CY - Prague, Czech Republic DA - 2009-07-26 PY - 2009 AN - OPUS4-20956 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Wille, Frank T1 - Transport von Großkomponenten aus der Stilllegung kerntechnischer Anlagen - Erfahrungen bei der mechanischen Bewertung T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Deutschland DA - 2010-05-04 KW - Kerntechnische Anlagen KW - Rückbau KW - Mechanische Bewertung KW - Großkomponenten KW - Numerische Analyse PY - 2010 IS - Sektion 7 / 706 SP - 1 EP - 5 CY - Berlin AN - OPUS4-21239 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Static and dynamic calculation approaches for mechanical design assessment of type B packages for radioactive material transport - 10193 T2 - WM2010 Conference CY - Phoenix, Arizona, USA DA - 2010-03-07 KW - Mechanische Bewertung KW - Radioaktives Material KW - Numerische Analyse KW - Typ B(U)-Verpackung PY - 2010 SP - 1 EP - 9 AN - OPUS4-21240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Zencker, Uwe A1 - Komann, Steffen T1 - Reflektion der verkehrsrechtlichen Bauartprüfung des CASTOR HAW 28M aus Sicht der zuständigen Behörde BAM T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Deutschland DA - 2010-05-04 KW - Bauartprüfung KW - Fallprüfungen KW - Transportbehälter KW - FEM PY - 2010 SP - 1 EP - 5 CY - Berlin AN - OPUS4-21241 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Zencker, Uwe T1 - Mechanical Design Assessment Approaches of Actual Spent Fuel and HLW Transport Package Designs T2 - 16th International Symposium of the Packaging and transportation of Radioactive Materials PATRAM CY - London, England DA - 2010-10-03 PY - 2010 AN - OPUS4-22132 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Aspekte der Konzeption der sicherheitstechnischen Nachweisführung - Mechanische Nachweisführung innerhalb der verkehrsrechtlichen Bauartprüfung T2 - 2. RAM-Behältersicherheitstage 2010, BAM CY - Berlin, Germany DA - 2010-03-18 PY - 2010 AN - OPUS4-23148 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank T1 - Rechnerische Simulation des mechanischen Verhaltens von holzgefüllten Stoßdämpfern von Transportbehältern für radioaktive Stoffe N2 - Basierend auf Fallversuchen mit Transportbehältern für radioaktive Stoffe sowie auf einem Versuchsprogramm mit Holzproben wurden die Energieabsorptionsmechanismen identifiziert und ein Modell für das Verhalten von Fichtenholz bei axialer Belastung entwickelt. Das Modell zieht für die Kompression von Holz die seitliche Dehnungsbehinderung – im kontinuumsmechanischen Zusammenhang wäre das die Mehrachsigkeit des Spannungszustandes im Kontinuum – in Betracht. Die Energie, die vom Holz absorbiert werden kann, ist umso größer, je größer die seitliche Dehnungsbehinderung ist. Für die Modellierung mit Finite Elemente Methoden wurden verschiedene Modellierungsstrategien untersucht, keine der vorgeschlagenen Modellierungsstrategien war in der Lage, dass Verhalten von Holz bei Druckbeanspruchung und großen Deformationen inkl. der Entfestigung zu modellieren. Bei Verwendung einer entfestigenden Fließkurve zeigt das Modell ausgeprägte Netzabhängigkeiten und numerischen Instabilitäten. Für die Modellierung der Entfestigung mit Hilfe einer von der Mehrachsigkeit des Spannungszustandes gesteuerten Fließflächenevolution ist kein geeignetes Materialmodell vorhanden. Anhand der Simulation eines Fallversuchs mit einem Behälterkörper und stoßdämpfenden Bauteilen im Maßstab 1:2 wurde gezeigt, dass zwar eine vollständige Modellierung des Stoßdämpferverhaltens inkl. Entfestigung nicht möglich war, aber das Stoßdämpferverhalten mit einer nicht-entfestigenden Fließkurve sinnvoll modelliert werden konnte. Eine Verifikation des Modellierungsansatzes am real zu modellierenden Bauteil ist zwingend erforderlich. Wenn signifikante Änderungen zwischen Verifikations- und Simulationsobjekt auftreten, ist die Zuverlässigkeit der Rechenergebnis als gering zu bewerten. Nur wenn die auftretenden Kompressionsmechanismen durch eine Analyse des Stoßdämpferholzes bestimmt werden können, ist eine zuverlässige Ermittlung von Stoßdämpferkräften- und verformungen möglich. T2 - Jahrestagung Kerntechnik 2011 CY - Berlin, Germany DA - 17.05.2011 KW - Radioaktive Stoffe KW - Transport KW - Stoßdämpfende Bauteile KW - FEM KW - Simulation PY - 2011 SP - 1 EP - 6 AN - OPUS4-23851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Weber, Mike A1 - Wille, Frank T1 - Finite element mesh design of a cylindrical cask under puncture drop test conditions N2 - Transport casks for radioactive materials have to withstand the 9 m drop test, 1 m puncture drop test and dynamic crush test with regard to the mechanical requirements according to the IAEA regulations. The safety assessment of the package can be carried out on the basis of experimental investigations with prototypes or models of appropriate scale, calculations, by reference to previous satisfactory safety demonstrations of a sufficiently similar nature or a combination of these methods. Computational methods are increasingly used for the assessment of mechanical test scenarios. However, it must be guaranteed that the calculation methods provide reliable results. Important quality assurance measures at BAM are given concerning the preparation, run and evaluation of a numerical analysis with reference to the appropriate guidelines. Hence, a successful application of the finite element method requires a suitable mesh. An analysis of the 1 m puncture drop test using successively refined finite element meshes was performed to find an acceptable mesh size and to study the mesh convergence using explicit dynamic finite element codes. The finite element model of the cask structure and the puncture bar is described. At the beginning a coarse mesh was created. Then this mesh was refined in two steps. In each step the size of the elements was bisected. The deformation of the mesh and the stresses were evaluated dependent on the mesh size. Finally, the results were extrapolated to an infinite fine mesh or the continuous body, respectively. The uncertainty of the numerical solution due to the discretization of the continuous problem is given. A safety factor is discussed to account for the uncertainty. The calculation results are compared with experimental data from a puncture drop test with a half-scale model of a cylindrical cask. This paper supports the convergence studies of the Task Group on Computational Modeling for Explicit Dynamics reporting to the ASME BPV Code Working Group on Design Methodology. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - IAEA puncture drop test KW - Numerical analysis KW - Verification KW - Explicit dynamics PY - 2010 SP - 1 EP - 8 (Session T45 / Paper 219) AN - OPUS4-23843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Wille, Frank A1 - Musolff, André ED - Topping, B.H.V. T1 - Validation of numerical simulation models for transport and storage casks using drop test results N2 - The safety assessment of new designs for transport and storage casks for radioactive materials is a challenging task accomplished using different methods such as prototype tests, model tests, calculations and analogy reflections. At BAM (Federal Institute for Materials Research and Testing), the test procedures for the mechanical IAEA (International Atomic Energy Agency) test conditions often start with preliminary finite element (FE) calculations mostly with a small-scale cask model for verification of the proposed test cask instrumentation and test plan. On that basis the extensive test cask instrumentation is applied and checked. After that, a series of drop tests consisting of different test sequences is performed. Following the drop tests, numerical post-analyses are carried out. These analyses offer the possibility of a detailed calculation and assessment of stresses and strains in the entire test cask construction. The calculation results have to be carefully compared with the measurement data over the impact history to find out all relevant parameters for a realistic simulation of the impact scenario. The desired ideal boundary test conditions often cannot be met exactly during the drop tests. Therefore, the numerical post-analyses are carried out by using the real boundary conditions of the drop tests. The objective is to find a validated model, where the results of the numerical simulations satisfactorily meet the experimental results. Under test conditions according to the IAEA transport regulations, casks are usually equipped with impact limiters and dropped onto a so-called unyielding target. In general, it is difficult to verify a complex FE model by using results from only one drop test because of the complex impact process and the complex structure of such packages. After each drop test, numerical post-analyses should be carried out. Only if all drop tests were simulated successfully by using the same FE model under different test conditions, it is possible to obtain a validated numerical model for further investigations. In this case the results of the numerical simulations meet satisfactorily the experimental results. In this paper a study is presented, where the influence of different components on the cask loading is investigated systematically. T2 - 11th International conference on computational structures technology CY - Dubrovnik, Croatia DA - 2012-09-04 KW - Impact KW - Simulation KW - Cask KW - Dop test KW - Finite element model KW - Validation KW - Dynamics KW - Transport and storage cask PY - 2012 U6 - https://doi.org/10.4203/ccp.99.273 SN - 1759-3433 IS - Paper 273 SP - 1 EP - 12 PB - Civil Comp Press AN - OPUS4-26537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Wille, Frank T1 - Approach for the use of acceleration values for packages of radioactive material under routine conditions of transport N2 - The most relevant source of reference for load cases of packages for the transport of radioactive material under routine conditions is Appendix IV of the International Atomic Energy Agency (IAEA) Advisory Material TS-G-1·1. The acceleration values given there leave many questions open and have to be agreed upon with the involved competent authorities. Consequently, the actual load cases applied for a safety analysis may differ widely and could cause problems for international transport. To avoid such difficulties, it seems obvious that the according passages in TS-G-1·1 should be modified with the objective of making the load case data more consistent for a harmonized application in the IAEA member states. Papers pointing out in this direction were discussed at the PATRAM 2010 conference. The way to improve the acceleration data may lie in investigations and measurements considering, for example different types of vehicles and package masses. However, what should be the goal of such kind of surveys? Can such investigation provide values for every worldwide load case possible under routine conditions of transport? In particular, the different designs of vehicles give a reason to doubt that such an aim is realistic. The approach in this paper is to show that a less ambitious aim is more effective. Therefore, an approximate scheme is preferred, which renders better assistance in determining the appropriate acceleration values. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 22.05.2012 KW - Radioactive materials KW - Safety assessment KW - IAEA regulations KW - Lost cases KW - Routine conditions of transport PY - 2012 SP - 1 EP - 8 AN - OPUS4-26747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sterthaus, Jens A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Wille, Frank T1 - Numerical analysis of bolted trunnion systems of packages for radioactive materials T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 2012-07-15 KW - Bolted trunnion KW - German guideline BAM-GGR 012 KW - Local stress and strain fields KW - Local and nominal assessment criteria PY - 2012 SP - PVP2012-78499, 1-6 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Mike A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Musolff, André T1 - From experiment to appropriate finite element model-safety assessment for ductile cast iron casks demonstrated by means of IAEA puncture drop test N2 - In the approval procedure of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM Federal Institute for Materials Research and Testing. The combination of experimental investigations and numerical calculations in conjunction with materials and components testing is the basis of the safety assessment concept of the BAM. Among other mechanical test scenarios, a 1 metre drop test onto a steel bar has to be considered for the application of the hypothetical accident conditions to Type B packages according to IAEA regulations. Within the approval procedure for the new German package design of the HLW cask CASTOR® HAW 28M, designed by GNS Gesellschaft für Nuklear-Service Germany, a puncture drop test was performed with a half-scale model of the cask at -40°C. For independent assessment and to control the safety analysis presented by the applicant, BAM developed a complex finite element (FE) model for a dynamical ABAQUS/ExplicitTM analysis. This paper describes in detail the use of the FE method for modelling the puncture drop test within an actual assessment strategy. At first, investigations of the behaviour of the steel bar were carried out. Different friction coefficients and the material law of the bar were analysed by using a 'rigid-body' approximation for the cask body. In the next step, a more detailed FE model with a more realistic material definition for the cask body was developed. The validation of calculated strains was carried out by comparison with the results of the strain gauges located at the relevant points of the cask model. The influence of the FE meshing is described. Finally, the validated FE half-scale model was expanded to full-scale dimension. Scaling effects were analysed. The model was used for safety assessment of the package to be approved. KW - IAEA puncture drop test KW - Cylindrical cask KW - Explicit dynamics KW - Scaled model KW - Numerical analysis KW - Validation KW - Safety assessment PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000010 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 3 SP - 148 EP - 153 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-25356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Mechanical assessment within type B packages approval: application of static and dynamic calculation approaches N2 - This paper demonstrates exemplarily how numerical and experimental approaches can be combined reasonably in mechanical assessment of package integrity according to the IAEA regulations. The paper also concentrates on the question about how static mechanical approaches can be applied, and what their problems are in relation to dynamic calculation approaches. Under defined impact tests, which represent accident transport conditions, the package has to withstand impact loading, e.g. resulting from a 9 m free drop onto an unyielding target in sequence with a 1 m puncture drop test. Owing to the local character of the interaction between the puncture bar and the cask body, it is possible to develop a dynamic numerical model for the 1 m puncture drop which allows an appropriate simulation of the interaction area. Results from existing experimental drop tests with prototype or small scale cask models can be used for verification and validation of applied analysis codes and models. The link between analysis and experimental drop testing is described exemplarily by considering a regulatory 1 m puncture bar drop test onto the cask body of a recently approved German high level waste transport package. For the 9 m drop test of the package, it is difficult to develop a dynamic numerical model of the package due to the complexity of the interaction between cask body, impact limiters and unyielding target. Dynamic calculations require an extensive verification with experimental results. The simulation of a 9 m drop of a package with impact limiters is thereby often more complex than the simulation of a 1 m puncture drop onto the cask body. A different approximation method can be applied for the consideration of dynamic effects on the impact loading of the package. In a first step, maximum impact force and rigid body deceleration of the cask body during the impact process can be calculated with simplified numerical tools. This rigid body deceleration can subsequently be applied on a verified static numerical model. Dynamic effects, which cannot be covered by the static numerical analysis, have therefore to be considered by using an additional dynamic factor. The paper describes this approach exemplarily for a 9 m horizontal drop of a typical spent fuel cask design. KW - Package assessment KW - Package KW - Packaging KW - Structural analysis PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000012 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 4 SP - 179 EP - 183 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-26448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger T1 - German Approach and Experience Feedback of Transport ability of SNF Packages after interim storage T2 - PATRAM 2013 17th International Symposium on Packaging and Transportation of Radioactive Materials CY - San Francisco, CA, USA DA - 2013-08-18 PY - 2013 AN - OPUS4-29771 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehrig, Marko A1 - Bletzer, Claus Wilhelm A1 - Wille, Frank T1 - Safety assessment aspects of type B(U) packages containing wet intermediate level waste N2 - In Germany, the mechanical and thermal safety assessment of approved packages for the transport of RAM is carried out by BAM as the competent authority according to the International Atomic Energy Agency regulations. BAM was involved in several approval procedures with ductile cast iron containers containing wet intermediate level waste. These contents, which are not dried, only drained, consist of saturated ion exchange resin and a small amount of free water. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific points. The physical and chemical compatibility of the content itself and of the content with materials of the package must be shown. From the mechanical resistance point of view, the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vapourisation. This could be caused by radiolysis of the liquid and must be taken into account for the storage period. The paper deals primarily with the pressure build-up inside the package caused by the regulatory thermal test (30 min at 800°C) as part of the cumulative test scenario under accident conditions of transport. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from the beginning of the thermal test until cooling down. In this case, calculating the temperature distribution requires, besides the consideration of conduction and heat radiation, consideration of evaporation and condensation including the associated processes of transport. KW - Type B KW - Wet content KW - Pressure build-up KW - Vapourisation KW - Thermal test KW - Radioactive waste KW - Thermal analysis PY - 2012 UR - http://www.maneyonline.com/doi/full/10.1179/1746510913Y.0000000024 U6 - https://doi.org/10.1179/1746510913Y.0000000024 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 187 EP - 190 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Wille, Frank T1 - Methodological aspects for finite element modelling of lid systems for type B(U) transport packages N2 - The regulatory compliance of the containment system is of essential importance for the assessment process of Type B(U) transport packages. The requirements of the International Atomic Energy Agency safety standards for transport conditions imply high loading on the containment system. The integrity of the containment system has to be ensured in mechanical and thermal tests. The containment system of German spent nuclear fuel and high level waste transport packages usually includes bolted lids with metal gaskets. The finite element (FE) method is recommended for the analysis of lid systems according to the guideline BAM-GGR 012 for the assessment of bolted lid and trunnion systems. The FE analyses provide more accurate and detailed information about loading and deformation of such kind of structures. The results allow the strength assessment of the lid and bolts as well as the evaluation of relative displacements between the lid and the cask body in the area of the gasket groove. This paper discusses aspects concerning FE simulation of lid systems for type B(U) packages for the transport of spent nuclear fuel and high level waste. The work is based on the experiences of the BAM Federal Institute for Materials Research and Testing as the German competent authority for the mechanical design assessment of such kind of packages. The issues considered include modelling strategies, analysis techniques and interpretation of results. A particular focus of this paper is on the evaluation of the results with regard to FE accuracy, influence of the FE contact formulation and FE modelling techniques to take the metallic gasket into account. KW - Transport cask KW - Closure system KW - Boiled joints KW - Numerical analysis PY - 2012 U6 - https://doi.org/10.1179/1746510913Y.0000000021 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 211 EP - 216 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Feldkamp, Martin A1 - Bletzer, Claus Wilhelm A1 - Wille, Frank T1 - Thermal test driven pressure build-up inside type-B packages containing wet radioactive waste N2 - In recent years several German approval procedures for ductile cast iron transport containers containing wet intermediate level waste were conducted. BAM, as one of the German competent authorities, was involved in the complex design assessment work with this specific issue. Thermal analysis is one part of the authority assessment work done by BAM in Germany. The radioactive contents of package designs which were not dried, only drained, consist of saturated ion exchange resin and a small amount of free water. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific points. The most interesting point, however, is the pressure build-up inside the package due to vaporization. This could be caused by radiolysis of the liquid and must be taken into account for the storage period. The inner pressure of the package leads to mechanical loads to the package body, the lid and the lid bolts. Thus, the pressure is the driving force on the gasket system regarding the activity release and a possible loss of tightness. The paper deals primarily with the pressure build-up inside the package caused by the transport regulatory thermal test (30 min at 800 °C) as part of the cumulative test scenario under accident conditions of transport. The pressure build-up is estimated by calculation in a very conservative way regarding conduction and heat radiation. Furthermore the paper discusses a conservative approach for the estimation of the resulting pressure depending on the percentage of water inside the cask. To get trustworthy results without an exact specification of the content, experimental fire tests should be conducted. However, this paper shows the difficulties of assessing casks containing wet content. From the authority assessment point of view, drying of the content could be an effective way to avoid the above described pressure build-up and the associated difficulties for the safety assessment. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Type-B KW - Wet content KW - Pressure build-up KW - Radioactive waste KW - Thermal test PY - 2013 SP - Paper 108, 1 EP - 10 PB - Omnipress AN - OPUS4-30197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger A1 - Baden, M. T1 - German approach and experience feedback of transport ability of SNF packages after interim storage N2 - In Germany the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised “Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks” by the German Waste management Commission (ESK). For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. In recent years the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependant system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report including evaluation of long term behavior of components and specific operating procedures of the package. Present research and knowledge concerning the long term behavior of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behavior of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Storage KW - Transport KW - Lagerung KW - Verpackung KW - Radioactive material PY - 2013 SP - 1 EP - 9 PB - Omnipress AN - OPUS4-30159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Kiyak, Yusuf A1 - Wille, Frank A1 - Zerbst, Uwe A1 - Weber, Mike A1 - Klingbeil, Dietmar T1 - Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages N2 - In the design approval of transport packages for radioactive materials, the mechanical and thermal safety assessment is carried out in Germany by competent authority BAM. In recent years BAM was involved in several licensing procedures of new spent fuel and HLW package designs, where the cask body is of Ductile Cast Iron (DCI). According to IAEA regulations package designs have to fulfill requirements for specific conditions of transport. Type B(U) packages must withstand the defined accident conditions of transport. The temperature range from -40°C up to the operational temperature has to be considered. For the cask material DCI, it is necessary to determine safety against brittle fracture. The German guideline BAM-GGR 007 defines requirements for fracture mechanics of packagings made of DCI. Due to complex cask body structure and the dynamic loading a fracture mechanical assessment by analytical approaches is not always possible. Experience of recent design approval procedures show that the application of numerical calculations are applicable to determine the stresses and stress intensity factors in the cask body. At the first step a numerical analysis has to be done to identify the loading state at the whole cask body. Secondly an analysis of a detail of the cask body is made considering the displacement boundary conditions of the global model. An artificial flaw is considered in this detailed model to calculate the fracture mechanical loading state. The finite element mesh was strongly refined in the area of the flaw. The size of the artificial flaw is based on the ultrasonic inspection acceptance criteria applied for cask body manufacture. The applicant (GNS) developed additional analysis tools for calculation of stress intensity factor and/or J-Integral. The assessment approach by BAM led to the decision to develop own tools to the possibility for independent proof of the results. The paper describes the authority assessment approach for DCI fracture mechanics analysis. The validation procedure incl. the development of own tools is explained. BAM developed a postprocessor to determine the fracture mechanical loads. A horizontal 1 m puncture bar drop test is used to give a detailed description of the assessment procedure. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Wille, Frank T1 - Methodological aspects for numerical analysis of lid systems for SNF and HLW transport packages N2 - The regulatory compliance of the containment system is of essential importance for the design assessment of transport packages for radioactive materials. The requirements of the IAEA transport regulations SSR-6 for accident conditions implies high load on the containment system of Type B(U) packages. The integrity of the containment system has to be ensured under the mechanical and thermal tests. The containment system of German transport packages for spent nuclear fuel (SNF) and high level waste (HLW) usually includes bolted lids with metal gaskets. BAM Federal Institute for Materials Research and Testing as the German competent authority for the mechanical and thermal design assessment of approved transport packages has developed the guideline BAM-GGR 012 for the analysis of bolted lid and trunnion systems. According to this guideline the finite element (FE) method is recommended for the calculations. FE analyses provide more accurate and detailed information about loading and deformation of such kind of structures. The results allow the strength assessment of the lid and bolts as well as the evaluation of relative displacements between the lid and the cask body in the area of the gasket groove. This paper discusses aspects concerning FE simulation of lid systems for SNF and HLW transport packages. The work is based on the experiences of BAM within safety assessment procedures. The issues considered are the assessment methods used in the BAM-GGR 012 for bolted lid systems along with the nominal stress concept which is applied for bolts according to that guideline. Additionally, modeling strategies, analysis techniques and the interpretation of the results are illustrated by the example of a generalized bolted lid systems under selected accident conditions of transport. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erhard, Anton A1 - Völzke, Holger A1 - Droste, Bernhard A1 - Wolff, Dietmar A1 - Wille, Frank T1 - Nuclear power plant waste management strategy in Germany T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 2013-08-18 PY - 2013 SP - 1 EP - 11(?) PB - Omnipress AN - OPUS4-30135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Wille, Frank T1 - Maintenance of package design safety report effectiveness of SNF and HWL dual purpose casks T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 2013-08-18 PY - 2013 SP - 1 EP - 9(?) PB - Omnipress AN - OPUS4-30138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Wille, Frank ED - Czarwinski, R. T1 - Radioaktive Stoffe in besonderer Form-wichtige Aspekte im Zulassungsverfahren N2 - Für die Beförderung von umschlossenen radioaktiven Stoffen (Strahler) können Transporterleichterungen gelten, wenn das Strahlerdesign nachweislich unfallsicher ausgelegt ist und eine Zulassung als radioaktiver Stoff in besonderer Form vorliegt. Die in Deutschland zuständige Behörde für die Prüfung und Zulassung radioaktiver Stoffe in besonderer Form ist die Bundesanstalt für Materialforschung und –prüfung (BAM). Eine oft langfristige Nutzung der Strahler kann eine alterungsbedingte Schwächung der Umschließung des radioaktiven Stoffes zur Folge haben. Jeder Strahler einer zugelassenen Bauart muss jedoch im Beförderungsfall zu jeder Zeit, auch nach längerer Nutzung, den vorgeschriebenen Prüfanforderungen genügen. Die Alterungsbewertung auf der Grundlage einer vom Antragsteller zu spezifizierenden Nutzungsdauer des radioaktiven Stoffes in besonderer Form ist seit langer Zeit Bestandteil des Zulassungsverfahrens in Deutschland. Ein von Deutschland eingebrachter Vorschlag im Rahmen der anstehenden Revision der IAEA Empfehlungen für die sichere Beförderung von radioaktiven Stoffen (SSR-6) soll die Lesbarkeit des Regelwerkes bezüglich der Alterungsbewertung verbessern, Klarheit über die damit verbundenen Anforderungen erzeugen und damit zu einer Harmonisierung der Zulassungsverfahren auf internationaler Ebene beitragen. In diesem Beitrag sollen wichtige Einflussfaktoren auf das Alterungsverhalten von radioaktiven Stoffen in besonderer Form aufgezeigt und die Notwendigkeit für die Spezifikation einer Nutzungsdauer als Grundlage für die Alterungsbewertung begründet werden. Der deutsche Vorschlag für die Revision des IAEA Regelwerks zum sicheren Transport radioaktiver Stoffe (SSR-6) wird vorgestellt und erläutert. T2 - Jahrestagung des FS 2022 CY - Konstanz, Germany DA - 26.09.2022 KW - Strahlenschutz KW - Radioaktive Stoffe KW - Beförderung KW - Zulassung PY - 2022 SN - 1013-4506 SP - 15 EP - 20 PB - Fachverband für Strahlenschutz e.V. CY - Berlin AN - OPUS4-56134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Scheidemann, Robert A1 - Wille, Frank A1 - Ballheimer, Viktor T1 - Investigation of the internal impact during a 9 m drop test of an accident-safe waste package N2 - The safety assessment of packages for the transport of radioactive material follows the IAEA regulations and guidance. The specified regulatory tests cover severe accidents and demonstrate the package containment system integrity. Special attention must be drawn to the behaviour of the content which could move inside the package due to unpreventable gaps caused by the loading procedure and the structure of the content. A possible internal impact of the content which occurs during the drop tests onto the lid system is investigated. The IAEA regulations SSR-6 and the Guidance SSG-26, revised recently, consider input from Germany and France related to the significance of internal gaps. In the context of a waste package design assessment, a model was equipped with a representative content to conduct a drop test with an internal impact. The weight and kinetic impact of this content covered all possible real contents. The objective of the test was to maximize the load onto the lid system and to prove the mechanical integrity by complying with the required leak tightness. The test was conducted conservatively at a package temperature lower than -40 °C at the BAM Test Site Technical Safety. This paper gives an overview of efforts to address internal gaps and their consequences, and the BAM efforts with the implementation of this topic into IAEA regulations and guidance material. The paper then focuses on the conduction of a drop test and investigation of internal component impact. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Internal gaps KW - Drop test KW - IAEA PY - 2021 SN - 978-0-7918-8535-2 U6 - https://doi.org/10.1115/PVP2021-60996 SP - 1 EP - 6 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wille, Frank T1 - CASTOR in Warteposition, aber bitte sicher. N2 - CASTOR-Behälter sollen den Auswirkungen schwerster Unfälle standhalten und müssen dabei ihre Sicherheitsfunktionen beibehalten. Dazu zählen der sichere Einschluss des radioaktiven Inventars mit nachgewiesener Behälterintegrität und -dichtheit, die ausreichende Abschirmung der radioaktiven Strahlung, die Ableitung der von den Brennelementen ausgehenden Wärme und der Ausschluss des Entstehens einer nuklearen Kettenreaktion, d.h. die Kritikalitätssicherheit sind zu gewährleisten. Zum Nachweis dieser Fähigkeiten werden die Behälter gegen Stoß, Aufprall, Durchstoßen, Feuer sowie beim Eintauchen in Wasser geprüft. Durch diese Tests werden Beanspruchungen aus potentiellen schweren Unfällen abdeckend simuliert. Die hierfür erforderlichen experimentellen Tests, aber auch die Prüfung und Entwicklung komplexer rechnerischer Simulationen des Behälterverhaltens unter Anwendung der Finite-Elemente-Methode erfolgen bei der Bundesanstalt für Materialforschung und -prüfung (BAM). Die Basis bildet das Regelwerk der Internationalen Atom- und Energieorganisation (IAEO) zum sicheren Transport von radioaktiven Stoffen, welches international harmonisierte Schutzziele und Prüfanforderungen definiert. Die seit 60 Jahren praktizierte stetige Weiterentwicklung der Sicherheitsanforderungen trägt aktuellen Erkenntnissen, Erfahrungen und Risikoanalysen Rechnung. Die Brennelementbehälter werden mechanischen Prüfungen sowie Brand- und Wasserdruckprüfungen unterzogen. Hierdurch wird nachgewiesen, dass sie den Auswirkungen eines schweren Unfalls standhalten können. Nur Behälter die zweifelsfrei die kumulativen mechanischen und thermischen Tests und auch die Wasserdruckprüfung mit Erfüllen aller Schutzziele bestehen, bekommen eine Zulassung, die es erlaubt die Behälter zu transportieren. KW - Kerntechnik KW - Radioaktive Stoffe KW - Transport KW - Zwischenlagerung KW - IAEA KW - Fallprüfung PY - 2022 U6 - https://doi.org/10.26125/73hj-nz53 SN - 1611-9479 VL - 24 IS - 3 SP - 112 EP - 114 PB - Bunsen-Gesellschaft CY - Frankfurt AN - OPUS4-54856 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gröke, Carsten A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Anforderungen an die Bauartprüfung und Maßnahmen zur Qualitätssicherung für nicht zulassungspflichtige Versandstücke N2 - Überblick über die Regelwerksanforderungen an die Bauarten von nicht zulassungspflichtigen Versandstücken, sowie die zu erfüllenden Maßnahmen zur Qualitätssicherung für die Auslegung, die Herstellung und den Betrieb. T2 - KONTEC 2019 CY - Dresden, Germany DA - 27.03.2019 KW - Radioaktiv KW - Beförderung KW - IP-2 KW - IP-3 KW - Typ A KW - Anerkennung KW - Bauartprüfung PY - 2019 SP - 136 EP - 142 AN - OPUS4-56343 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical Simulation of Spent Fuel Segments under Transport Loads N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. Considering the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in Information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a spent fuel assembly Segment are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Dynamic and quasi-static finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. Beam elements are used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The dynamic load applied is gathered from an experimental drop test with a spent fuel cask performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 SN - 978-1-51088-669-8 SP - 1 EP - 7 AN - OPUS4-52046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Wille, Frank A1 - Komann, Steffen A1 - Neumann, Martin T1 - Introduction of an ageing management approach for packages for the transport of radioactive materials N2 - With integration of the new para 613A into SSR-6 [1] the consideration of ageing mechanisms is now obligatory for the design of packages and their approval. In addition, para 809(f) of SSR-6 [1] requires consideration of the effects of storage on ageing mechanisms, safety analyses and operation and maintenance instructions. German competent authorities Bundesanstalt für Materialforschung und -prüfung (BAM) and Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) are considering the aspect of ageing in approval procedures. Ageing assessment is mainly focused on dual purpose casks (DPC) package designs which are long-term stored in interim storage facilities. For these package designs, the evaluation of ageing management is now mandatory for the maintenance of the package design approvals with a validity period of 5 years and beyond. The ageing management includes amongst others a gap analysis, the assessment of ageing effects and operational experiences during operation and interim storage. BAM works on the compilation of a guideline for implementation of paras 613A, 809(f) and 809(k) for packages requiring competent authority approval at the application procedure in Germany. The paper describes essential items of ageing mechanisms and will give a foresight to the ageing management evaluation by BAM. T2 - INMM & ESARDA Joint Annual Meeting CY - Online meeting DA - 30.08.2021 KW - Dual purpose casks KW - Ageing KW - SSR-6 KW - Interim storage KW - Ageing mechanisms KW - Transport of radaioactive materials PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/10383/presentation/964 SP - 1 EP - 6 PB - Institute of Nuclear Materials Management (INMM) CY - Mount Laurel, NJ AN - OPUS4-53180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Wille, Frank T1 - Dynamisches Verhalten und Überwachung des Großen Fallturms der BAM in Horstwalde N2 - Falltürme sind Bauwerke, die als Versuchsanlagen sehr speziellen, impulsartigen Belastungen ausgesetzt sind. Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurde bei Routineinspektionen eine Abnahme der strukturellen Integrität in Form von Vorspannungsverlusten in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen, wurde ein umfassendes Structural Health Monitoring (SHM) System geplant und am Bauwerk installiert unter Nutzung von digitalen Bauwerksmodellen. Für die Auslegung des Überwachungssystems, insbesondere aber zur Unterstützung der Untersuchung des Schädigungsprozesses, wurden Finite-Elemente-Modelle erstellt. Um sicherzustellen, dass die FE-Modelle das reale Tragwerksverhalten mit ausreichender Genauigkeit abbilden, mussten sie jedoch in Bezug auf die gemessenen Antworten des Tragwerks kalibriert werden. Der vorliegende Beitrag beschreibt experimentelle und numerische Untersuchungen zur Identifizierung des strukturellen Systems des Stahlrohrgitterturms in Vorbereitung einer Überwachungskampagne. Die Auswertung von gemessenen Schwingungen unter ambienter Anregung ermöglichte die Identifizierung der Eigenfrequenzen mehrerer globaler Schwingungsmoden des Fallturms. Zur Modellvalidierung wurde zunächst eine Sensitivitätsanalyse durchgeführt, um die Parameter mit dem größten Einfluss zu ermitteln. Anschließend wurde ein evolutionärer Algorithmus (EA) zur Optimierung nach dem Prinzip der Minimierung der Differenzen zwischen gemessenen und simulierten charakteristischen Antworten eingesetzt. Das aktualisierte Modell wurde schließlich an der dynamischen Reaktion der Turmstruktur infolge einer realen Falltest-induzierten Stoßbelastung validiert. Die Ergebnisse zeigten eine gute Übereinstimmung zwischen numerischen und experimentellen Ergebnissen. N2 - Drop test towers are structures subjected to very specific dynamic loadings. At the drop test tower at the Test Site Technical Safety (TTS) of BAM routine inspections revealed a decline of structural integrity in form of loss of pretension in bolts of structural steel connections. To get an understanding about the underlying damage mechanisms as well as to assure the structural safety in operation, a multifaceted Structural Health Monitoring (SHM) system was planned and installed at the structure with the help of digital models. For planning the monitoring system but especially for supporting the investigation of the damaging process finite element models are deployed. Though, to ensure the capability of the FE model to reproduce the real structural behavior in sufficient accuracy, it needs to be calibrated in respect to measured responses of the structure. The present contribution describes experimental and numerical investigations to identify the structural system of the steel tube lattice tower in preparation of the monitoring campaign. An ambient vibration test allowed the identification of the natural frequencies of several global vibrational modes of the drop test tower. For model updating first a sensitivity analysis is applied to identify the most influencing parameter. In succession a genetic algorithm was applied for optimization in the sense of minimization of the difference between measured and simulated characteristic responses. The updated model is finally validated on the dynamic response of the tower structure to a real drop test induced impact loading. The results showed a good agreement between numerical and experimental results though the robustness of the simulation should be improved by more sophisticated numerical modelling. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Großer Fallturm Horstwalde KW - Structural Health Monitoring KW - Belastungsversuch KW - Modalanalyse KW - Schwingungsdynamik KW - Finite Elemente Simulation PY - 2022 SN - 978-3-18-092379-6 SN - 978-3-18-102379-2 U6 - https://doi.org/10.51202/9783181023792-265 SN - 0083-5560 VL - 2379 SP - 265 EP - 284 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-55472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank A1 - Reiche, I. A1 - Ramsay, J. T1 - New Sco-III regulations to ship large objects as surface contaminated objects N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. The latest 2018 edition of the International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Material, No. SSR-6 [1], incorporates regulations for the shipment of large objects as a new category of surface contaminated object, SCO-III, based on the IAEA “performance package” concept. This paper provides background and practical guidance on these regulations. Additionally, the experiences of BAM with the appoval of two steam converters of the NPP Lingen are presented as the first approval process for SCO-III objects in Germany. The primary additions to SSR-6 include SCO-III classification and requirements, approval and administrative requirements for the new classification, and the addition of SCO-III to the proper shipping name for UN 2913. Advisory material drafted for the new requirements will be included in the next revision of SSG-26, Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, expected to be published soon. Note that at this time the proposed provisions for large objects do not include components such as reactor vessels, due to the more limited experience and greater radioactivity levels. The SCO-III concept lays the groundwork and may be extended to cover other large objects that are classified as low specific activity (LSA) material in the future. T2 - Kerntechnik 2022 CY - Leipzig, Germany DA - 21.06.2022 KW - Transport packages KW - Radioactive materials KW - SCO-III KW - Large objects PY - 2022 SP - 1 EP - 7 AN - OPUS4-55423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Transport von Großkomponenten aus der Stilllegung kerntechnischer Anlagen in Deutschland-Erfahrungen bei der mechanischen Intergritätsbewertung N2 - Im Zuge des Rückbaus kerntechnischer Anlagen in Deutschland müssen u. a. Großkomponenten (Dampferzeuger, Reaktordruckbehälter) über öffentliche Verkehrswege in Zwischenlager transportiert werden, in denen sie zerlegt bzw. zwischengelagert werden. Da es sich hierbei um aktivierte und/oder oberflächenkontaminierte Objekte handelt, ist eine Begutachtung unter Berücksichtigung der Gefahrgutbeförderungsvorschriften notwendig. In den meisten Fällen handelt es sich um oberflächenkontaminierte Gegenstände, welche als Industrieversandstücke des Typs IP-2 zu befördern sind. KW - Zwischenlagerung KW - Entsorgung KW - Kerntechnik KW - Radioaktive Stoffe PY - 2016 SN - 0005-6650 VL - Mai 2016 IS - Band 91 SP - 188 EP - 192 PB - Springer VDI Verlag CY - Düsseldorf AN - OPUS4-36852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Sterthaus, Jens T1 - Package design assessment aspects of gaps between content and lid N2 - Type B(U) packages for the transport of radioactive material have to withstand accident conditions of transport defined in the regulations of the IAEA International Atomic Energy Agency in form of different mechanical (drop) tests with a subsequent thermal test. According to the regulatory requirements the orientation of the package in drop tests shall be such to cause the most damaged state in the components performing the safety functions. For the package lid system a 9-m drop onto the unyielding target with lid side downwards is often the most damaging orientation. The impact loads acting on the lid in this orientation result mainly from interaction between lid and internal content. In case of a movable content its impact onto the inner side of the lid can cause additional load peaks on the lid and the lid bolts. The intensity of the internal collision depends on the position of content relating to lid at the time of package first contact with target. Due to physical limitations an axial gap, which could be set in “pre-drop” configuration of package or which could spontaneously appear during the drop test, usually does not cover the maximum size possible in specific package design. In this context, the combination of drop tests with post-test analysis can be helpful to better estimate the effect of internal impact. The paper summarized some aspects of this issue based on the BAM experience in the design assessment of Type B(U) transport packages. Additionally the paper shall support applicants in German approval procedures to reduce rounds of questions and ensure delivery of reliable safety case documents to the authorities. International discussions of this issue at the IAEA and a joint proposal by France and Germany to improve Advisory Material text will be introduced. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Lid behavior KW - Transport package KW - Secondary impact KW - Inventaraufprall KW - Fallprüfung PY - 2016 SP - 1 EP - 10 AN - OPUS4-37548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Sterthaus, Jens T1 - Package design assessment aspects of gaps between content and lid N2 - Type B(U) packages for the transport of radioactive material have to withstand accident conditions of transport defined in the regulations of the IAEA International Atomic Energy Agency in form of different mechanical (drop) tests with a subsequent thermal test. According to the regulatory requirements the orientation of the package in drop tests shall be such to cause the most damaged state in the components performing the safety functions. For the package lid system a 9-m drop onto the unyielding target with lid side downwards is often the most damaging orientation. The impact loads acting on the lid in this orientation result mainly from interaction between lid and internal content. In case of a movable content its impact onto the inner side of the lid can cause additional load peaks on the lid and the lid bolts. The intensity of the internal collision depends on the position of content relating to lid at the time of package first contact with target. Due to physical limitations an axial gap, which could be set in “pre-drop” configuration of package or which could spontaneously appear during the drop test, usually does not cover the maximum size possible in specific package design. In this context, the combination of drop tests with post-test analysis can be helpful to better estimate the effect of internal impact. The paper summarized some aspects of this issue based on the BAM experience in the design assessment of Type B(U) transport packages. Additionally the paper shall support applicants in German approval procedures to reduce rounds of questions and ensure delivery of reliable safety case documents to the authorities. International discussions of this issue at the IAEA and a joint proposal by France and Germany to improve Advisory Material text will be introduced. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Impact behavior KW - Fallprüfung KW - Inventarverhalten KW - Secondary impact KW - Spalte PY - 2016 AN - OPUS4-37549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Wille, Frank T1 - Approach for use of acceleration values for packages of radioactive material under routine conditions of transport KW - Radioactive materials KW - Safety assessment KW - IAEA regulations KW - Load cases KW - Routine conditions of transport KW - IAEA advisory material TS-G-1.1 KW - Appendix IV KW - Revision of load case data KW - Acceleration values PY - 2013 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 24 IS - 2 SP - 55 EP - 59 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-30378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Wille, Frank T1 - Dicht und sicher abgeschirmt N2 - BAM-GGR Transportverpackungen für radioaktive Stoffe müssen den BAM-Gefahrgutregeln entsprechen. Ein kurzer Einblick in die Richtlinien. PY - 2014 SN - 0944-6117 VL - 3 SP - 18 EP - 20 PB - Vogel CY - München AN - OPUS4-30487 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Neumann, Martin A1 - Apel, Andreas A1 - Ballheimer, Viktor T1 - Applicabele Standards on Retention System Design in Germany T2 - IAEA Technical Meeting on Tie-Down System Design CY - Vienna, Austria DA - 2014-03-24 PY - 2014 AN - OPUS4-30707 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Konzept Brennelement-Transporte nach Zwischenlagerung T2 - 4. RAM Behältersicherheitstage, BAM CY - Berlin, Germany DA - 2014-03-26 PY - 2014 AN - OPUS4-30708 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Crushing characteristics of spruce wood used in impact limiters of type B packages T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 2013-08-18 KW - Spruce wood KW - Crush test KW - Impact limiter PY - 2013 SP - 1 EP - 10(?) PB - Omnipress AN - OPUS4-30219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Wille, Frank A1 - Droste, Bernhard T1 - Extended storage after long-term storage N2 - Existing spent nuclear fuel (SF) and high active waste (HAW) management policies and practices worldwide are the result of past presumptions that sufficient reprocessing and/or disposal capacity would be available in the near term. Consequently, in the past many countries have developed specific solutions for different periods of time due to their individual national nuclear policies. In Germany the concept of dry interim storage in dual purpose metal casks before disposal is being pursued for SF and HAW management and transport and storage licenses have been issued accordingly. The current operation licenses for existing storage facilities have been granted for a storage period of up to 40 years. This concept has demonstrated its suitability for over 20 years so far. Relevant safety requirements haven been assessed for the short-term as well as for the long-term for site-specific operational and accidental storage conditions. But in the meantime significant delays in the national repository siting procedure occured which will make extended storage periods necessary in the future. This paper describes the current situation in Germany with regard to dry cask storage and focuses on current perspectives considering regulatory, technical, and scientific aspects for storage license renewal. Since there is one case of a storage license limitation to only 20 years due to administrative reasons, first experience is currently gathered in case of an expiring storage license. Subsequent license options have been pursued intensively including the extension of the initial storage license as well as shipping all casks to another storage facility considering an extended storage period at that storage facility as well. All safety relevant aspects have to be reviewed on basis of the current state-of-the-art which might be different from the initial safety demonstrations. That includes new safety assessment standards as well as improved knowledge base. Major issues are e.g. improved accident scenario analyses, assessment methods, and consideration of aging effects from previous operation periods. Inspection programs with respect, e.g. to bolts and seals to verify leak-tightness and lid screw pre-stress have been initiated to demonstrate proper cask conditions for extended storage as well as transportation to another storage facility. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Extended storage KW - Long-term storage KW - Dual purpose cask PY - 2013 SP - Paper 184, 1 EP - 12 PB - Omnipress AN - OPUS4-30242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Schubert, Sven A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Droste, Bernhard T1 - Reflection on BAM mechanical design assessment of TN®24E spent fuel transport package N2 - TN®24 E, a new package design, was developed and applied for by Areva TN for German transport approval certificate. The certificate was issued by BfS, Federal Office for Radiation Protection, on 24th of July 2013. The package is designed as a dual purpose cask for transport and storage of up to 21 PWR spent fuel assemblies from German NPPs. BAM is the German competent authority responsible for the design assessment of RAM packages regarding mechanical and thermal safety cases, activity release analysis and all issues of quality assurance during manufacturing and operation of packages. Certain assessment experiences as well as new developments resulting from the BAM TN®24E approval procedure are presented. The mechanical safety case of the TN®24E is based mainly on finite element calculations, which were verified by the TN®81 1/3 scale drop test program performed at BAM. Thermal analyses rely upon calculations, while the activity release criterion is based upon leakage rate results of TN®81 drop tests. The BAM-GGR 012 guideline for the analysis of bolted lid and trunnion systems has been fully implemented. Due to requirements by BAM, AREVA TN developed a new assessment strategy for fracture mechanical evaluation of welding seams. The material qualification and documentation is also an important aspect of BAM assessment; the qualification of borated aluminum basket material, the determination of strength values for thermal aged hardened aluminum alloys for the basket or consideration of high burn-up fuel assemblies are remarkable issues in this context. In addition, the consideration of the material compatibility, especially taking into account a transport after 40 years of dry interim storage in German facilities, has gained significant importance in the licensing process of the TN®24E. Next to obvious mechanical issues such as the assessment of shell ovalization under 9 m drop test scenario and its impact on basket load, thermo-mechanical interactions had to be addressed in the safety case. Due to BAM requirements, AREVA TN performed a full thermo-mechanical analysis of the cask behavior under fire test conditions. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Transport KW - RAM KW - Radioactive material cask KW - Nuclear fuel PY - 2013 SP - 1 EP - 12 PB - Omnipress AN - OPUS4-30270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Situation and Gap Analysis of SNF Transportation after Interim Storage in Germany T2 - INMM Spent Fuel Management Seminar XXIX 2014 CY - Arlington, VA, USA DA - 2014-01-13 PY - 2014 AN - OPUS4-30271 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Wille, Frank A1 - Droste, Bernhard A1 - Neumann, Martin T1 - Modeling of wood filled impact limiters for transport packages - 14111 N2 - Packages for the transport of SNF and HLW are usually equipped with impact limiters to reduce the loads that result from the regulatory 9 m drop test. A common impact limiter design in Germany is a welded steel sheet structure filled with wood. The material wood is the main energy absorber, while the steel sheet provides the integrity of the impact limiter. The IAEA allows mechanical safety cases of transport packages to be carried out computationally, as long as the models used are reliable. In this context, a Finite Element (FE) modeling approach for wood and its application to impact limiters in the calculation of a 9 m drop test is presented. A user material model for wood was developed for the dynamic FE-Code LS-DYNA. Its features are based on a series of crush tests with spruce wood specimens. The model considers wood as a material with transversely isotropic properties, i.e. in the directions parallel and perpendicular to the fiber. The plastic material behavior depends on the state of stress. This has shown to be important to account for the lateral constraint of wood in impact limiters resulting from steel sheet encapsulation. Lateral constraint or respectively, a multiaxial stress state, increases the compression strength level of wood, limits the softening effect and increases the hardening effect. Lateral constraint also increases volumetric and reduces deviatoric deformation. The wood material model considers various hardening and softening characteristics via input flow curves. It considers effects of temperature and strain rate on strength as well. The development of a multi-surface yield criterion and a plastic potential that enables the user input of plastic Poisson's ratios were the challenges during the development of material model. A dynamic FE calculation of a horizontal drop test with an 18,000 kg test package was performed. The wood material model was used to model the wooden impact limiter inlays. The impact limiter deformation and the package deceleration were compared to the experimental drop test results to rate the performance of the wood material model. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Transport package KW - Radioactive material KW - Spruce wood KW - Impact limiter KW - Material model KW - Finite element PY - 2014 SN - 978-0-9836186-3-8 SP - 1 EP - 10 AN - OPUS4-30653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Schilling, O. A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Komann, Steffen T1 - Assessment strategy of numerical analyses of RAM package components - 14619 N2 - In Germany current package design safety cases include more and more advanced numerical methods, e. g. finite element analysis (FEA), often in combination with local concepts of strength evaluation of the structure. This approach requires extensive modeling and verification procedures. As a consequence the efforts of authority assessment of design safety analysis increase as well. Only the check of pre- and post-data of numerical calculations is often not sufficient for the safety assessment. On the other hand own analyses of the mechanical problem by performing an Independent numerical modeling and analyzing is not always realizable. Therefore it is necessary to look for optimized procedures of the assessment, without loss of safety. This paper shows possibilities for the assessment strategy of numerical analyses with focus on simple analytical approaches as comparative calculations. Such approaches can be helpful to support evaluation of numerical calculations in the whole assessment procedure. Three examples are considered to Show which possibilities and limits exist to support the assessment of numerical analyses using analytical comparative calculations. Two examples of bolt and lid analysis show the influence of component and boundary stiffness on the results. Thickness to length/width ratios are partially exceeded and only fixed or free boundary conditions can be analyzed analytical. Nevertheless These analytical approaches can help to evaluate the numerical results for the assessment. The example of a trunnion demonstrates the limits of analytical approaches. The trunnion shows a complex deformation behavior and local stresses. A single basic theory isn’t matching and a construct of several approaches is not useable for calculations of local stresses. Therefore numerical calculations during assessment are necessary. Analytical approaches are not always purposeful but often effective to reduce the effort of assessment for numerical analysis of complex and safety relevant components of RAM packages. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14619, 1 EP - 14 AN - OPUS4-31047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, O. A1 - Müller, Lars A1 - Ballheimer, Viktor A1 - Komann, Steffen A1 - Wille, Frank T1 - Analytical approaches within the assessment strategy of numerical analyses of components of RAM packages N2 - Load attachment points, consisting of the lifting component and corresponding bolt connections, and lid systems, consisting of a lid, gaskets and bolt connections, are usually analyzed numerically using the Finite Element Method. Reasons for applying the FEM are complex geometry, specific load distribution and the violation of application criteria for analytical approaches. For example the elementary beam theory is not suitable for the calculation of compact trunnions and the Kirchhoff plate theory is not suitable for the calculation of lids with a large thickness to diameter ratio because the Bernoulli-hypothesis is violated. In addition for structural integrity assessments often local stress and for the evaluation of lid systems tightness local contact opening are needed, which can be obtained only through accurately discretized numerical models. Independent comparative calculations are essential for complex calculations. Simplified but appropriate analytical approaches are an efficient way of examination. Is it possible to provide conservative analytical estimates of such kind of analysis problems? Are analytical calculations an appropriate approach in today's authority assessment business? Using the example of bolted trunnion and lid systems of a heavy package the possibilities and limits of analytical comparative calculations are shown. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - Paper 217, 1 EP - 9 PB - Omnipress AN - OPUS4-31048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Weber, Mike A1 - Musolff, André T1 - Mechanical Safety Assessment Strategy for Ductile Cast Iron Casks demonstrated by means of IAEA 1m Puncture Drop Test T2 - RAMTRANS 2009 CY - Manchester, England DA - 2009-05-12 PY - 2009 AN - OPUS4-19361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Zencker, Uwe T1 - Recent experiences in mechanical design assessment of spent fuel and HLW casks by competent authority in Germany - 10093 T2 - WM2010 Conference CY - Phoenix, Arizona, USA DA - 2010-03-07 KW - Design testing KW - Transport packages KW - Numerical analysis PY - 2010 SP - 1 EP - 10 AN - OPUS4-21106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Zencker, Uwe T1 - Recent Experiences in Mechanical Design Assessment of Spent Fuel and HLW Casks by Competent Authority in Germany T2 - Waste Management Conference 2010 CY - Phoenix, AZ, USA DA - 2010-03-07 PY - 2010 AN - OPUS4-21117 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Droste, Bernhard T1 - Mechanical safety analysis for high burn-up spent fuel assemblies under accident transport conditions KW - Fuel rods KW - High burn-up KW - Accident conditions KW - Mechanical analysis KW - Failure KW - Accident transport conditions PY - 2010 U6 - https://doi.org/10.1179/174650910X12913756439836 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 21 IS - 4 SP - 212 EP - 217 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-23051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wille, Frank A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Zencker, Uwe T1 - Mechanical design assessment approaches of actual spent fuel and HLW transport package designs KW - Package design KW - Spent fuel KW - High level waste KW - Design computations KW - Testing KW - Design testing KW - Transport packages KW - Numerical analysis KW - Mechanical analysis PY - 2010 U6 - https://doi.org/10.1179/174650910X12913738452796 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 21 IS - 4 SP - 203 EP - 207 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-23052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Masslowski, Jörg-Peter A1 - Droste, Bernhard A1 - Pope, R. T1 - Historical view and experiences with the crush test for light weight packages T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Crush test KW - IAEA regulations KW - Type-B PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-23303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Musolff, André T1 - From experiment to an appropriate finite element model-safety assessment for ductile cast iron casks demonstrated by means of IAEA puncture drop test N2 - In the approval procedure of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM Federal Institute for Materials Research and Testing. The combination of experimental investigations and numerical calculations in conjunction with materials and components testing is the basis of the safety assessment concept of the BAM. Among other mechanical test scenarios a 1 meter drop test onto a steel bar has to be considered for hypothetical accident conditions of Type B packages according to IAEA regulations. Within the approval procedure for the new German package design of the HLW cask CASTOR® HAW 28M, designed by GNS Gesellschaft für Nuklear-Service Germany, a puncture drop test was performed with a half-scale model of the cask at -40°C. For independent assessment and to control the safety analysis presented by applicant, BAM developed a complex finite element model for a dynamical ABAQUS/ExplicitTM analysis. This paper describes in detail the use of the finite element (FE) method for modeling the puncture drop test within an actual assessment strategy. At first investigations of the behaviour of the steel bar are carried out. Different friction coefficients and the material law of the bar are analysed by using a 'rigid-body' approximation for the cask body. In the next step a more detailed FE model with a more realistic material definition for the cask body is developed. Strain verification is possible by results of the strain gauges located at the relevant points of the cask model. The influence of the finite element meshing is described. Finally, the verified FE half-scale model is expanded to full-scale dimension. Scaling effects are analysed. The model is used for safety assessment of the package to be approved. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - IAEA KW - Puncture drop test KW - Numerical analysis KW - Verification PY - 2010 SP - 1-8 (Tuesday/T19/26-115) AN - OPUS4-23928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Requirements on Transport Packages after Interim Storage - Current Approach and Perspectives T2 - U.S. NRC Workshop CY - Washington, D.C., USA DA - 2011-07-11 PY - 2011 AN - OPUS4-24126 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Requirements on Transport Packages after Interim Storage - Curent Spproach and Perspectives T2 - NMM 52nd Annual Meeting CY - Palm Desert, CA, USA DA - 2011-07-17 PY - 2011 AN - OPUS4-24127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zencker, Uwe A1 - Weber, Mike A1 - Wille, Frank T1 - Finite element mesh design of a cylindrical cask under puncture drop test conditions N2 - Transport casks for radioactive materials have to withstand the 9 m drop test, 1 m puncture drop test and dynamic crush test with regard to the mechanical requirements according to the IAEA regulations. The safety assessment of the package can be carried out on the basis of experimental investigations with prototypes or models of appropriate scale, calculations, by reference to previous satisfactory safety demonstrations of a sufficiently similar nature or a combination of these methods. Computational methods are increasingly used for the assessment of mechanical test scenarios. However, it must be guaranteed that the calculation methods provide reliable results. Important quality assurance measures at the Federal Institute for Materials Research and Testing are given concerning the preparation, run and evaluation of a numerical analysis with reference to the appropriate guidelines. Hence, a successful application of the finite element (FE) method requires a suitable mesh. An analysis of the 1 m puncture drop test using successively refined FE meshes was performed to find an acceptable mesh size and to study the mesh convergence using explicit dynamic FE codes. The FE model of the cask structure and the puncture bar is described. At the beginning a coarse mesh was created. Then this mesh was refined in two steps. In each step the size of the elements was bisected. The deformation of the mesh and the stresses were evaluated dependent on the mesh size. Finally, the results were extrapolated to an infinite fine mesh or the continuous body, respectively. The uncertainty of the numerical solution due to the discretisation of the continuous problem is given. A safety factor is discussed to account for the uncertainty. KW - IAEA puncture drop test KW - Cylindrical cask KW - FE mesh refinement KW - Explicit dynamics KW - Numerical analysis PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000008 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 2 SP - 112 EP - 116 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-24016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Requirements for transport packages after interim storage N2 - In Germany the concept of dry interim storage of spent fuel and vitrified high active waste in dual purpose metal casks is implemented (currently for periods of up to 40 years). The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the guidelines of the German Reactor Safety Commission for dry interim storage of spent fuel. Currently part of the assessment process of the cask design for transport on public routes is to evaluate the suitability of the used materials with respect to their properties and their compatibility for possible transport periods. For transport on public routes during or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfill the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. This paper describes the state-of-the-art technology in Germany and points out arising prospective challenges and which related questions have to be answered in future. Present research and knowledge concerning the long term behavior of transport and storage cask components (such as gaskets and shielding components) have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are therefore i.e. the behavior of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period (aged package). Assessment methods for the material compatibility, the behavior of fuel assemblies and the aging behavior of shielding parts (e. g. influence of radiation) are further issues as well. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Transport package design KW - Interim storage KW - Inspections KW - Log term behavior KW - Dual purpose casks PY - 2011 SP - 1 EP - 9 AN - OPUS4-24172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Wille, Frank T1 - Transport of large nuclear power plant components - experiences in mechanical design assessment T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Mechanische Bewertung KW - Radioaktives Material KW - Numerische Analyse PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-23383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Mechanical assessment within type B packages approval - the application of static and dynamic calculation approaches T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Mechanische Bewertung KW - Radioaktives Material KW - Numerische Analyse PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-23384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Aktuelle Aspekte der Qualitätssicherung bei Herstellung und Betrieb zulassungspflichtiger und nicht zulassungspflichtiger Verpackungen für Versandstücke zur Beförderung radioaktiver Stoffe T2 - BMVBS Informationsaustausch zur verkehrsrechtlichen Aufsicht CY - Bonn, Germany DA - 2011-03-01 PY - 2011 AN - OPUS4-23457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Zencker, Uwe T1 - Mechanical design assessment approaches of actual spent fuel and HLW transport package designs T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Design testing KW - Transport packages KW - Numerical analysis PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-23590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Wille, Frank T1 - Transport of large nuclear power plant components - experiences in mechanical design assessment T2 - Ramtransport 09 - 8th International Conference on radioactive materials transport 2009 CY - Manchester, Great Britain DA - 2009-05-12 KW - Rückbau KW - Kerntechnische Anlagen KW - Großkomponenten KW - Transport KW - Mechanik PY - 2009 IS - Session 5 / PAP 12 SP - 1 EP - 8 AN - OPUS4-20557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Droste, Bernhard T1 - Mechanical safety analysis for high burn-up spent fuel assemblies under accident transport conditions T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Accident transport conditions KW - Fuel rods KW - High burn-up KW - Failure PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-23760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Wille, Frank A1 - Musolff, André T1 - Numerical simulation of 9 meter drop of a transport and storage cask with aluminium impact limiter N2 - For the purpose of numerical simulation of 9 meter drop of a transport and storage cask with aluminium impact limiter, an elastic-incremental plastic material model with strain rate hardening acc. to Cowper-Symonds is used for the development of isothermal as well as adiabatic stress-strain relations of aluminium from the compression test at constant ambient temperature. After that, two different simulation strategies are compared. At first, the drop test is calculated fully coupled, i.e. with isothermal stress-strain relations and possible heat generation in the material. Then the drop test is recalculated in a very simplified manner with adiabatic stress-strain relations from the compression test in an isothermal simulation. Both calculation strategies show similar results in the investigated load scenario. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Drop test KW - Spent fuel transport cask KW - Finite element calculation KW - Dynamic simulation KW - Impact limiter KW - Aluminium PY - 2010 SP - 1-8 (Monday-T16-117) AN - OPUS4-23707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Introduction of BAM safety assessment experience feedback list N2 - BAM as competent authority regarding assessment of mechanical and thermal design, activity release and quality assurance aspects of SNF and HLW transport packages developed a thesaurus of experience feedback topics from recent approval procedures. The list is structured according to the European PDSR guide. It involves issues, which from BAM point of view, needed clarification during last package design assessment procedures. The list contains issues from operation (e.g. deactivation of handling lugs not intended for package handling), maintenance (e.g. leak tightness of impact limiting devices) to technical assessment (e.g. formation of hydrogen by radiolysis and its impact on pressure and ignitability, consideration of ageing mechanisms, thermo-mechanical assessment, impact of gaps between content and flask, spent fuel behaviour) as well as to general and specific safety analysis report requirements (e.g. report structure and required data). T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Experience feedback list KW - Radioactive material KW - Transport PY - 2016 UR - http://www.patram2016.org/ SP - Paper 4002, 1 AN - OPUS4-37850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Erenberg, Marina A1 - Wille, Frank T1 - Behaviour of Wood Filled Impact Limiters during Fire Test N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure the transport cask meets the mechanical and thermal IAEA regulatory test requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. According to the regulations during and following the thermal test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Corresponding to results of the French institute IRSN combustion and smouldering of wood inside the impact limiter occurred during and after the fire test. An additional energy supply from a pre-damaged impact limiter to the cask could be the consequence for the safety assessment of the containment. BAM started a first test phase to examine the issue of combustion for such kind of package components. The goal was to understand the phenomena under the consideration of relevant regulatory boundary conditions. Several metal buckets were filled with wood and equipped with thermocouples. The test specimens have been prepared with different damage arrangements to take the influence of the mechanical tests into account. This paper shows the experimental setup and the conduction of the tests. The first test shows that pre-damaged metal encapsulations can lead to smouldering of the wood and with this to a supplement energy release after the end of the 30 minute fire. BAM is in the preparation process for a second test phase. A thermal test will take place with a wood filled test specimen weighing about 2Mg. T2 - The 18th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2016) CY - Kobe, Japan DA - 18.09.2016 KW - Large scale testing KW - Fire test KW - Impact limiter KW - Shock absorber KW - Thermal test KW - Typ-B KW - Wood KW - Smouldering PY - 2016 SP - paper no. 1011 AN - OPUS4-37854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Gap analysis by periodical reviews of transport package design safety reports of German SNF/HLW dual purpose casks N2 - Storage of spent nuclear fuel and high-level waste in dual purpose casks (DPC) is related with the challenge of maintaining safety for transportation over several decades of storage. Beside consideration of aging mechanisms by appropriate design, material selection and operational controls to assure technical reliability by aging management measures, an essential issue is the continuous control and update of the DPC safety case. Not only the technical objects are subject of aging but also the safety demonstration basis is subject of “aging” due to possible changes of regulations, standards and scientific/technical knowledge. The basic document, defining the transport safety conditions, is the package design safety report (PDSR) for the transport version of the DPC. To ensure a safe transport in future to a destination which is not known yet (because of not yet existing repository sites) periodical reviews of the PDSR, in connection with periodic renewals of package design approval certificates, have to be carried out. The main reviewing tool is a gap analysis. A gap analysis for a PDSR is the assessment of the state of technical knowledge, standards and regulations regarding safety functions of structures, systems and components. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM2016 CY - Kobe, Japan DA - 18.09.2016 KW - Radioactive material KW - Gap analysis KW - Periodical review KW - Approved packages PY - 2016 SP - Paper 5004, 1 EP - 9 AN - OPUS4-37641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Müller, Lars A1 - Rolle, Annette A1 - Wille, Frank A1 - Droste, Bernhard T1 - Aspects of spent fuel behavior assessment for transport packages N2 - Transport packages for spent nuclear fuel have to be assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by BAM for the authority assessment of spent fuel behavior within the package design approval procedure of German package designs. In particular, cracks or failures in the fuel rod cladding can occur under regulatory transport conditions. These defects can cause the release of gas, volatiles, fuel particles or fragments into the package cavity and have to be considered properly in the safety analysis. Another issue is the transport of defective fuel rods. One concept is to use special canisters which can be handled like fuel assemblies. This concept requires additional assessment concerning drying, sealing and the mechanical and thermal design of such canisters. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The simplified approaches to consider conservatively spent fuel behavior currently accepted by BAM are presented here. T2 - International Conference on Management of Spent Fuel from Nuclear Power Reactors - An Integrated Approach to the Back-End of the Fuel Cycle CY - Wien, Austria DA - 15.06.2015 KW - Transport packages KW - Spent fuel assessment PY - 2015 SP - 1 AN - OPUS4-38102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard A1 - Schubert, Sven A1 - Probst, Ulrich A1 - Wille, Frank T1 - Verification of activity release compliance with regulatory limits within spent fuel transport casks T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Radioactive material KW - Safety assessment KW - Leakage mechanism KW - Leakage rate KW - Sealing behavior PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-32193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sterthaus, Jens A1 - Ballheimer, Viktor A1 - Bletzer, Claus Wilhelm A1 - Linnemann, Konrad A1 - Nehrig, Marko A1 - Wille, Frank T1 - Numerical approach for containment assessment of transport packages under regulatory thermal test conditions N2 - The requirements of the IAEA safety standards for Type B(U) packages include the thermal test as part of test sequences that represents accident conditions of transport. In comparison to mechanical tests, e.g., 9 m drop onto an unyielding target with short impact durations in a range of approximately 10 ms to 30 ms, the extended period of 30 min is defined in regulations for exposure of a package to a fire environment. Obviously, the required containment capability of the package has to be ensured not only after completing the test sequence but also over the course of the fire test scenario. Especially, deformations in the sealing area induced by the non-uniform thermal dilation of the package can affect the capability of the containment system. Consequently, thermo-mechanical analyses are required for the assessment. In this paper some aspects of finite element analysis (FEA) of transport packages with bolted closure systems under thermal loading are discussed. A generic FE model of a cask is applied to investigate the stress histories in the bolts, lid, and cask body as well as the deformations in the sealing area and the compression conditions of the gasket. Based on the parameter variations carried out, some recommendations in regard to modeling technique and results interpretation for such kind of analyses are finally given. T2 - PVP2014 - ASME 2014 Pressure vessels & piping division conference CY - Anaheim, CA, USA DA - 2014-07-20 KW - Transport packages KW - Containment KW - Thermo-mechanical analyses KW - FEA KW - Gasket PY - 2014 SN - 978-0-7918-4600-1 U6 - https://doi.org/10.1115/PVP2014-28199 VL - 3 SP - 28199, 1 EP - 14 AN - OPUS4-32349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Wille, Frank T1 - Safety assessment of Lid systems of transport packages for radioactive materials by use of finite element analyses N2 - The regulatory compliance of the containment system is of essential importance for the design assessment of transport packages for radioactive materials. The requirements of the IAEA transport regulations SSR-6 for accident conditions implies high load on the containment system of Type B(U) packages. The integrity of the containment system has to be ensured under the mechanical and thermal tests. The containment system of German transport packages for spent nuclear fuel (SNF) and high level waste (HLW) usually includes bolted lids with metal gaskets. BAM Federal Institute for Materials Research and Testing as the German competent authority for the mechanical and thermal design assessment of approved transport packages has developed the guideline BAMGGR 012 for the analysis of bolted lid and trunnion systems. According to this guideline the finite element (FE) method is recommended for the calculations. FE analyses provide more accurate and detailed information about loading and deformation of such kind of structures. The results allow the strength assessment of the lid and bolts as well as the evaluation of relative displacements between the lid and the cask body in the area of the gasket groove. This paper discusses aspects concerning FE simulation of lid systems for SNF and HLW transport packages. The work is based on the experiences of BAM within safety assessment procedures. The issues considered are the assessment methods used in the BAM-GGR 012 for bolted lid systems along with the nominal stress concept which is applied for bolts according to that guideline. Additionally, modeling strategies, analysis techniques and the interpretation of the results are illustrated by the example of a generalized bolted lid systems under selected accident conditions of transport. T2 - PVP2014 - ASME 2014 Pressure vessels & piping division conference CY - Anaheim, CA, USA DA - 20.07.2014 PY - 2014 SN - 978-0-7918-4600-1 SP - 28304, 1 EP - 12 AN - OPUS4-32383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Consideration of aging mechanism influence on transport safety of dual purpose casks for spent nuclear fuel of HLW N2 - When storage of spent nuclear fuel or high level waste is carried out in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable and can be justified and certified permanently throughout that period. The effects of aging mechanisms (e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. Consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components that cannot be directly inspected or changed without opening the cask cavity, like the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not the subject of technical aspects only but also of ‘intellectual’ aspects, like changing standards, scientific/technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of license holders and in appropriate design approval update processes. The paper addresses issues that are subject of an actual International Atomic Energy Agency TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. KW - Transport KW - Storage KW - Spent fuel KW - High-level waste KW - Aging KW - Metal seals KW - Transport and storage casks KW - Spent nuclear fuel KW - Aging mechanisms KW - Corrosion KW - Safety assessment PY - 2014 U6 - https://doi.org/10.1179/1746510914Y.0000000070 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 105 EP - 112 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Wille, Frank A1 - Feldkamp, Martin A1 - Rolle, Annette T1 - Aspects of gas generation caused by residual water inside ILW packages N2 - Packages for intermediate level waste (ILW) often contain residual water besides the actual waste. The water either exists as obvious free water or it may be bound physically or chemically, e.g. as pore water. Water driven gas generation could occur by vaporisation and by radiolysis. Steam as the result of vaporisation causes an increasing pressure inside a package and can affect corrosion. Vaporisation and condensation processes itself change the thermal behaviour of the content especially during strongly unsteady thermal situations like accident fire situations. Radiolysis changes the chemical composition of the content which could cause an unexpected interaction, e.g. hydrogen embrittlement. Besides the pressure build-up the radiolysis of water generates hydrogen and oxygen, which can be highly flammable respectively explosive. The gas generation caused by vaporisation and radiolysis must be taken into account during the design and the safety assessment of a package. Pressure build-up, a changed thermal behaviour and content chemistry, and especially the risk of accumulation of combustible gases exceeding the limiting concentration for inflammability has to be considered in the safety assessment. Approaches to ensure the transportability of stored packages due to radiolysis will be discussed. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Typ-B KW - ILW package KW - Gas generation KW - Radiolysis KW - Wet content PY - 2015 SP - 1 EP - 7 AN - OPUS4-33429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Wille, Frank T1 - Combustion of wood encapsulated in steel sheets during fire test N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by Steel sheets. These impact limiters shall ensure the transport cask meets the IAEA safety requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. According to the regulations during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Due to results of the French institute IRSN it was shown that after the fire test an additional energy supply from a pre-damaged impact limiter should be taken into account. The combustion or smouldering of wood was of interest. BAM started a first test phase to examine the issue of combustion for such kind of package components. The goal was to understand the phenomena under the consideration of relevant regulatory boundary conditions. Several metal buckets were filled with wood and equipped with thermocouples. The test specimens have been prepared with different damage arrangements to take the influence of the mechanical tests into account. This paper shows the experimental Setup and the conduction of the tests. The first test shows that pre-damaged metal encapsulations can lead to smouldering of the wood and with this to a Supplement energy release after the end of the 30 minute fire. The consequence could be, to consider additional thermal loads of wood filled impact limiters to filled the IAEA regulations, if the conditions of the tests are transferable to the safety analysis of the package design. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Typ-B KW - Impact limiter KW - Shock absorber KW - Wood KW - Thermal test KW - Fire test PY - 2015 SP - 1 EP - 9 AN - OPUS4-33407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Sterthaus, Jens T1 - Considereation of Gaps between Content and Lid within Package Design Assessment T2 - Ramtrans 2015, Conference on Radioactive Materials Transport and Storage CY - Oxforn, UK DA - 2015-05-19 PY - 2015 AN - OPUS4-33448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Sterthaus, Jens T1 - Consideration of gaps between content and lid within package design assessment N2 - Type B(U) packages for the transport of radioactive material have to withstand accident conditions of transport defined in the regulations of the International Atomic Energy Agency in form of different mechanical (drop) tests with a subsequent thermal test. According to the regulatory requirements the orientation of the package in drop tests shall be such to cause the most damaged state in the components performing the safety functions. For the package Iid system a 9 m drop onto the unyielding target with Iid side downwards is often the most damaging orientation. The impact Ioads acting on the Iid in this orientation result mainly from interaction between Iid and internal content. In case of a movable content its impact onto the inner side of the Iid can cause additional Ioad peaks on the Iid and the Iid bolts. The intensity of the internal collision depends on the position of content relating to Iid at the time of package first contact with target. Due to physical limitations an axial gap, which could be set in "pre-drop" configuration of package or which could spontaneously appear during the drop test, usually does not cover the maximum size possible in specific package design. In this context, the combination of drop tests with post-test analysis can be helpful to better estimate the effect of internal impact. The paper summarizes some aspects of this issue based on the BAM experience in the design assessment of Type B(U) transport packages. Additionally the paper shall support applicants in German approval procedures to reduce rounds of questions and ensure delivery of reliable safety case documents to the authorities. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Transport packages KW - Accident conditions of transport KW - Internal impacts KW - Lid/content interaction KW - Radioactive material PY - 2015 SP - 1 EP - 10 AN - OPUS4-33419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Experience feedback from BAM safety assessment of transport packages N2 - BAM as competent authority regarding assessment of mechanical and thermal design, activity release and quality assurance measures of Type-B(U) transport packages developed a thesaurus of experience feedback topics from recent assessment procedures. The list is structured according to the European PDSR guide. It involves issues, which from BAM's point of view, needed clarification during the last package design assessment procedures. The list contains issues from Operation (e.g. deactivation of handling lugs not intended for package handling), maintenance (e.g. leak tightness of impact limiting devices) to technical assessment (e.g. formation of hydrogen by radiolysis and its impact on pressure and ignitability, consideration of ageing mechanisms, thermo-mechanical assessment, impact of gaps between content and flask) as well as to general and specific safety analysis report requirements (e.g. report structure and required data). T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Transport KW - RAM KW - Radioactive material KW - Cask KW - Flask KW - Nuclear fuel PY - 2015 SP - 1 EP - 7 AN - OPUS4-33420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Mechanical behaviour of high burn-up SNF under normal and accident transport conditions - present approaches and perspectives - T2 - PSAM 11 ESREL 2012 - 11th International probabilistic safety assessment and management conference & The annual european safety and reliability conference CY - Helsinki, Finland DA - 2012-06-25 KW - Spent fuel KW - High burn-up KW - Transport conditions KW - Mechanical analysis PY - 2012 SP - 1 EP - 9(?) AN - OPUS4-33850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Considerations of aging mechanisms influence on transport safety and reliability of dual purpose casks for spent nuclear fuel or HLW N2 - When storage of spent nuclear fuel (SNF) or high-level waste (HLW) is done in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable, and can be justified and certified permanently throughout that period. The effects of aging mechanisms (like e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. The consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components which cannot be directly inspected or changed without opening the cask cavity, what are the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not subject of technical aspects only, but also of 'intellectual' aspects, like changing standards, scientific/ technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of the license holders and in appropriate design approval update processes. The paper addresses issues which are subject of an actual IAEA TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. T2 - PSAM 12 - Probabilistic safety assessment and management CY - Honolulu, Hawaii, USA DA - 22.06.2014 KW - Transport and storage casks for spent nuclear fuel or high level waste KW - Aging mechanisms KW - Corrosion KW - Safety assessment KW - Metal seals KW - Closure system KW - Spent fuel/high-level waste KW - Dual purpose casks KW - Metal seals reliability KW - Cesium corrosion PY - 2014 UR - http://psam12.org/proceedings/paper/paper_180_1.pdf SP - 1 EP - 10 AN - OPUS4-32518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Qualitätsfall bei der Fertigung von Tragzapfen für Castor-Behälter T2 - Informationsaustausch zur verkehrsrechtlichen Aufsicht bei der Beförderung radioaktiver Stoffe CY - Handelskammer, Bremen, Deutschland DA - 2015-01-27 PY - 2015 AN - OPUS4-32785 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Auffälligkeiten an Hebeösen von UF6-Behältern T2 - Informationsaustausch zur verkehrsrechtlichen Aufsicht bei der Beförderung radioaktiver Stoffe CY - Handelskammer, Bremen, Deutschland DA - 2015-01-27 PY - 2015 AN - OPUS4-32786 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Sterthaus, Jens A1 - Ballheimer, Viktor A1 - Apel, Andreas A1 - Neumann, Martin A1 - Kuschke, Christian T1 - Approaches of Trunnion Design T2 - IAEA Working Group Meeting on Tie-Down System Design CY - IAEA Vienna, Austria DA - 2015-02-23 PY - 2015 AN - OPUS4-32791 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Kuschke, Christian A1 - Neumann, Martin T1 - Package Trunnion Design in Germany T2 - IAEA Working Group Meetin on Tie-Down System Design CY - IAEA, Vienna, Austria DA - 2014-11-05 PY - 2014 AN - OPUS4-32245 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger A1 - Baden, M. T1 - German approach and feedback on experience of transportability of SNF packages after interim storage N2 - In Germany, the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised 'Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks' by the German Waste management Commission. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties, which satisfy the proofs for the compliance of the safety objectives at that time. In recent years, the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report, including evaluation of long term behaviour of components and specific operating procedures of the package. The present research and knowledge concerning the long term behaviour of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behaviour of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. Assessment methods for the material compatibility, the behaviour of fuel assemblies and the aging behaviour of shielding parts are issues as well. This paper describes the state of the art technology in Germany, explains recent experience on transport preparation after interim storage and points out arising prospective challenges. KW - Radioactive material storage KW - Dry storage KW - Interim storage KW - Cask design KW - Radioactive material transport KW - Regulation KW - Operating procedures KW - Package KW - Safety KW - Storage KW - Transport KW - Lagerung KW - Spent fuel PY - 2014 U6 - https://doi.org/10.1179/1746510914Y.0000000064 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 2 SP - 55 EP - 59 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Apel, Andreas A1 - Wille, Frank A1 - Moutarde, M. A1 - Sert, G. A1 - Caillard-Lizot, M.-T. A1 - Eckert, B. A1 - Konnai, A. A1 - Pstrak, D. A1 - Harvey, J. A1 - Desnoyers, B. A1 - Purcell, P. A1 - Fiaccabrino, V. T1 - Stowage during transport: a proposal for harmonization N2 - For stowage and retention during transport, the International Atomic EnergyAgency (IAEA) Transport regulations (SSR-6) only require that the package shall be securely stowed. Additional information is given in the IAEA guidance material (SSG-26), that includes specific load factors that should be considered in the safety demonstrations. Nevertheless, applicants commonly use other load factors to justify the design of the packaging attachment points. In particular, acceleration values vary between different countries and this may lead to difficulties during the validation of foreign approval certificates. Discussions with applicants identified that the load factors presented in the IAEA guidance material are not necessarily relevant for the different transport modes. For some modes, the load factors are representative of situations occurring in routine conditions of transport. For other modes, the load factors are more representative of situations occurring in normal or accident conditions of transport. Furthermore, the origins of the specified values are not clear. In this context, some IAEA TRANSSC members decided to review the stowage guidance. An international working group was constituted in 2013, including representatives of competent authorities, technical support organizations, and transport stakeholders. Several topics were discussed and many questions were raised during the two year review. For example, some discussions focused on Paper No.1031 2 the conditions which have to be considered for stowage design, both as relevant to the load factors used for strength and fatigue analysis, as well as the criteria which have to be considered for the package attachment points. In addition, related questions on operational aspects were also discussed. Overall, the working group concluded that new guidance material was warranted as input into SSG-26. As a result of those discussions, the international working group produced new guidance material for stowage in transport, addressing each of these topics. The proposal to modify the IAEA guidance material (SSG-26, Appendix IV), presented by France to the TRANSSC in the 2015 initiated Review cycle of the Regulations, was unanimously accepted and will be implemented in the next edition of the guidance material. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Packages for radioactive material KW - IAEA regulations (SSR-6, SSG-26) KW - Tie-down and stowage KW - Load cases for transport KW - Design of the packaging attachment points PY - 2016 SP - Paper 1031, 1 EP - 8 AN - OPUS4-38644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Transport von Großkomponenten aus der Stilllegung kerntechnischer Anlagen in Deutschland-Erfahrungen bei der mechanischen Integritätsbewertung N2 - Im Zuge des Rückbaus kerntechnischer Anlagen in Deutschland müssen u. a. Großkomponenten (Dampferzeuger, Reaktordruckbehälter) über öffentliche Verkehrswege in Zwischenlager transportiert werden, in denen sie zerlegt bzw. zwischengelagert werden. Für diese Versandstücke ist eine mechanische Integritätsbewertung, nach den Vorschriften der Internationalen Atomenergie-Organisation (IAEO), notwendig, die in der Regel unter dem Einsatz einer komplexen numerischen Berechnung erfolgt. ---------------------------------------------------------- In the course of decommissioning of power plants in Germany large nuclear components (steam generator, reactor pressure vessel) must be transported over public traffic routes to interim storage facilities, where they are dismantled or stored temporarily. For these packages a safety evaluation considering the International Atomic Energy Agency (IAEA) transport regulations is necessary, preferably by a complex numerical analysis. KW - Radioaktive Stoffe KW - Transport KW - Mechanik KW - Numerische Analyse PY - 2016 SN - 0005-6650 VL - 91 IS - 5 SP - 188 EP - 192 PB - Springer VDI Verlag CY - Düsseldorf AN - OPUS4-36016 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Wille, Frank A1 - Rolle, Annette A1 - Linnemann, Konrad T1 - Effects of additional gases resulting from residual water inside ILW packages N2 - Packages for intermediate level waste (ILW) often contain residual water besides the actual waste. The water either exists as obvious free water or it may be bound physically or chemically, e.g. as pore water. A water driven gas generation could occur by vaporisation and by radiolysis. Steam as the result of vaporisation causes an increasing pressure inside a package and can affect corrosion. Vaporisation and condensation processes itself change the thermal behavior of the content especially during strongly unsteady thermal situations like accident fire situations. Radiolysis changes the chemical composition of the content which could cause an unexpected interaction, e.g. hydrogen embrittlement. Besides the pressure build-up the radiolysis of water generates hydrogen and oxygen, which can be highly flammable respectively explosive. The gas generation caused by vaporisation and radiolysis must be taken into account during the design and the safety assessment of a package. Pressure build-up, a changed thermal behavior and content chemistry, and especially the risk of accumulation of combustible gases exceeding the limiting concentration for flammability has to be considered in the safety assessment. Approaches to ensure the transportability of stored packages due to radiolysis will be discussed. T2 - ASME 2016 Pressure Vessels & Piping Conference (PVP2016) CY - Vancouver, BC, Canada DA - 17.07.2016 KW - Radioactive material KW - Pressure build-up KW - Gas generation PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - Paper 63008, 1 EP - 6 AN - OPUS4-38451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Wille, Frank T1 - Zur Prüfung verpflichtet - Die BAM-Gefahrgutregel 016 (BAM-GGR 016) N2 - Im Gegensatz zu den zulassungspflichtigen Versandstücken für die gemäß der gefahrgutrechtlichen Regelwerksanforderungen eine behördlich ausgestellte Zulassung erforderlich ist, ist für die prüfpflichtigen Versandstücke lediglich eine behördliche Anerkennung und Überwachung des Managementsystems für die Auslegung, Herstellung, Prüfung, Dokumentation, den Gebrauch, die Wartung und Inspektion erforderlich. In der Bundesrepublik Deutschland ist gemäß den Festlegungen in der Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt die Bundesanstalt für Materialforschung und -prüfung (BAM) zuständig für die Anerkennung und Überwachung von Managementsystemen. KW - Gefahrgut KW - Radioaktive Stoffe KW - Normen KW - Regeln PY - 2018 SN - 0944-6117 VL - 2018 IS - 1-2 SP - 10 EP - 12 PB - Springer Fachmedien München GmbH CY - München AN - OPUS4-44168 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Gröke, Carsten A1 - Wille, Frank T1 - Assessment of quality management for transport packages not requiring authority design approval N2 - The majority of transports of radioactive materials are carried out in packages which don’t need a package design approval of a competent authority. Low active radioactive materials are transported in such kind of packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. In Germany the decision to phase out nuclear energy leads to a strong demand for packages to transport low and middle active radioactive waste due to the dismantling and decommissioning of nuclear power plants. According to IAEA regulations the “non-competent authority approved package types” are the excepted packages and the industrial packages of Type IP-1, IP-2 and IP-3 and of Type A. For the packages of Type IP-2, IP-3 and Type A an assessment by the German competent authority is required for the quality management for the design, manufacture, testing, documentation, use, maintenance and inspection. In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. T2 - Waste Management Conference 2018 CY - Phoenix, USA DA - 18.3.2018 KW - Radioactive material KW - Quality management system KW - Transport packages PY - 2018 SP - Article 18194, 1 EP - 7 AN - OPUS4-44170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Nasyrow, R. A1 - Papaioannou, D. A1 - Rondinella, V. A1 - Vlassopoulos, E. A1 - Pautz, A. T1 - Finite element modeling of spent fuel rod segments under bending loads N2 - Transport packages for spent nuclear fuel have to be assessed with respect to specific transport conditions which are defined in the regulations of the International Atomic Energy Agency. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important Inputs for the evaluation of the package capabilities under These conditions. Cracks or failures in the fuel rod cladding can cause the release of gas, volatiles or fuel particles into the cavity. The amount of substances in the cavity has to be considered in the assessment of the activity release and criticality safety. The mechanical analysis of the compound system formed by the fuel rod cladding and the spent fuel pellets is very difficult due to the limited knowledge of the material properties and the insufficient understanding of the interaction between pellets and cladding and between adjacent pellets. The variation of fuel assembly properties regarding cladding material, burn-up and the history of usage makes reliable predictions of the fuel rod behavior even harder. For a better understanding about the behavior of spent fuel rods, JRC and BAM have started a joint research project. In this context, JRC has developed a test device which allows quasi-static 3-point-bending test on fuel rod segments in the hot cell. The loads are applied with respect to the boundary conditions of the activity release assessment. This paper deals with the numerical calculation of a single fuel rod segment under bending load. The aim is to identify the governing mechanical parameters by the variation of constitutive assumptions, contact conditions, inner constraints, etc. This knowledge helps for the interpretation of the experimental results. Furthermore, the improved understanding about the behavior of the cladding-pellets system will be beneficial for the assessment of spent fuel transport conditions. T2 - SMIRT24 - 24th Conference on Structural Mechanics in Reactor Technology CY - Busan, Korea DA - 20.08.2017 KW - Finite element methods KW - Spent fuel assessment KW - Transport packages PY - 2017 SP - 1 EP - 8 AN - OPUS4-45316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Nehrig, Marko A1 - Wille, Frank ED - Saegusa, Toshiari ED - Sert, Gilles ED - Völzke, Holger ED - Wille, Frank T1 - Internal Pressure build-up of Waste Packages with Wet Contents Under Fire Impact N2 - Intermediate level waste often contains residual water or other liquids. The liquids can be decomposed due to radiolysis and can also vaporize especially under fire impact. These pressure generating processes are described. One example for the pressure determination inside a closed cask is discussed using two different approaches: analytical and CFD KW - Wet Content KW - Pressure build-up KW - Type-B Package PY - 2018 SN - 978-981-3234-03-1 SP - 195 EP - 209 PB - World Scientific Publishing CY - Singapore ET - Erste AN - OPUS4-45301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Erenberg, Marina A1 - Feldkamp, Martin A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Large Scale IAEA Thermal Test with Wood filled Impact Limiters N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood. Mostly this wood is encapsulated by steel sheets. The impact limiters are needed to ensure that the transport casks meet the IAEA safety requirements. According to the IAEA safety requirements a package has to withstand consecutively severe mechanical tests followed by a thermal test. The mechanical tests have to produce maximum damage concerning the thermal test. Following this, the impact limiters may have serious pre-damage when the thermal tests begins. The IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Small scale fire tests with wood filled metal drums by BAM and works of the French Institute for Radiological Protection and Nuclear Safety (IRSN) showed that pre-damaged steel encapsulated wooden structures could start smoldering initiated by the thermal test. These processes supply additional energy to the cask which should be considered within the safety assessment of the package. As not much is known about smoldering processes in encapsulated wooden structures with a reduced oxygen supply the need for a test was identified. To investigate the influence of a smoldering impact limiter concerning the amount of energy supplied to the cask in dependence of the time BAM conducted a large scale impact limiter thermal test. For that, a pre-damaged impact limiter with a diameter of 2,3 m was mounted on a water tank simulating a cask. A complex system of a regulated pump, a heater, a cooler, a slide valve, a flow meter and numerous thermocouples were installed and connected to a control unit to ensure all needed operating conditions. After a pre-heating compared to typical SNF decay-heat, the 30 min lasting fire phase of the thermal test was started. After that, the expected and initiated smoldering began. The results of the large scale test are presented in this poster. Systematic small scale tests will follow to identify the influence of different parameters, e.g. moisture content and scale effects. The tests took place at BAM Test Site for Technical Safety (TTS) with its various possibilities for mechanical and thermal tests. The results of these tests will have direct influence in the safety assessment of transport cask for the transport of radioactive material T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Type-B Package KW - Thermal Test PY - 2018 SP - Paper 18257, 1 EP - 11 AN - OPUS4-45311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank ED - Müller, Lars T1 - Assessment experience on packages loaded with damaged spent nuclear fuel for transport after storage N2 - In 2017 the first German package approval certificate was issued for a dual purpose cask (DPC) design with encapsulated damaged spent nuclear fuel. At the Bundesanstalt für Materialforschung und -prüfung (BAM) a comprehensive assessment procedure was carried out with respect to the mechanical and thermal design, the containment design and quality assurance for manufacturing and operation. Main objective of this procedure was to verify the Package Design Safety Report (PDSR) fulfils the requirements according to the IAEA regulations SSR-6. Until now only standard spent nuclear fuel assemblies were designated for interim storage and transports. Due to nuclear phase out in Germany all other kinds of SNF in particular damaged fuel has to be packed. Therefore specific requirements have to be considered in accordance with international experiences written in IAEA technical reports. In Germany damaged spent nuclear fuel (DSNF) needs a tight encapsulation with special encapsulations and clearly defined properties. Due to the limited amount of DSNF these encapsulations are designed for storage and transport in existing packages. From the assessment experience it has been seen, corresponding PDSR need an extensively expansion to cover the design of these encapsulations and their influences on the package. Then such well-defined encapsulations can be handled like standard fuel assemblies. The main difference to standard package components is, encapsulations with permanent closure achieve their specified condition not after manufacturing but only during operation after loading and closing. Thus specific handling instruction and test procedures are necessary especially for welding, where BAM is able to survey the quality of this first part of operation. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2018 SP - Paper 18524, 1 EP - 8 AN - OPUS4-45258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, Marianne A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Sterthaus, Jens T1 - Recent developments in standards and IAEA guidance material for package load attachment points N2 - For transport package design and operation according to IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. Another standard with relevance to the load attachment of packages is ISO 10276. This standard deals with trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology and proposed revised text for the ISO standard for international discussion. The paper describes relevant tie-down aspects, gives background argumentation, and tries to support harmonized application of the revised IAEA guidance material and future ISO 10276 standard. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Acceleration KW - Package design KW - ISO KW - Ladungssicherung PY - 2018 AN - OPUS4-45293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Sterthaus, Jens T1 - Recent developments in standards and IAEA guidance material for package load attachment points N2 - For transport package design and operation according to IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. Another standard with relevance to the load attachment of packages is ISO 10276. This standard deals with trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology and proposed revised text for the ISO standard for international discussion. The paper describes relevant tie-down aspects, gives background argumentation, and tries to support harmonized application of the revised IAEA guidance material and future ISO 10276 standard. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Verzögerungswerte KW - Lastanschlag KW - Trunnion design KW - ISO KW - Retention PY - 2018 SP - 18511, 1 EP - 8 AN - OPUS4-45294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Debruyne, M. A1 - Eckert, B. A1 - Wille, Frank A1 - Gauthier, F. A1 - Le Bars, I. A1 - Cordier, N. A1 - Jouve, A.-C. T1 - Assessment of safety demonstrations relative to packages containing UF6 N2 - Specific attention should be paid on safety demonstrations transmitted by applicants in the case of approval request for the package designs containing enriched UF6. Concerning the shipment of enriched UF6, the package designs consist in general of a filled 30B cylinder surrounded by an overpack. The description of the content, considering the UF6 origin, i.e. natural or reprocessed, shall be clearly justified especially when the UF6 isotopic composition exceeds the limits specified in ASTM standards. Concerning the containment of the UF6, the applicant shall demonstrate in all conditions of Transport the leak-tightness of the valve and plug of the cylinders filled with enriched UF6. In this regard, when justifications are based on numerical calculations, the absence of contact between These components of the cylinder and the internal surfaces of the overpack after the regulatory drop tests shall be shown. In particular, absence of contact between the valve and any other component of the packaging shall be confirmed to respect the current IAEA regulations [3]. If complementary calculations show a contact between the plug and the internal surfaces of the overpack, additional tests are required to confirm that the strength resulting from this contact will not affect the plug leak-tightness. It can be noticed that the future revision of the IAEA regulations will include additional provision in case of contact of the plug with any other component of the packaging. In addition, the applicant shall demonstrate that the melting temperature of the valve, including the tinned joint, will not be exceeded during the regulatory fire test. Furthermore, the representativeness of the ballast used to simulate the behaviour of the UF6 loaded within the cylinder shall be justified if drop tests are performed. Finally, specific provisions relative to the use of plugs and the maintenance of cylinders should be included in the safety analysis reports. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Uranhexaflourid KW - Package safety KW - Valve KW - Drop testing KW - Radioactive material PY - 2018 SP - 18523, 1 EP - 8 AN - OPUS4-45295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Apel, Andreas A1 - Nehrig, Marko T1 - Revision of IAEA Guidance Material for Package Load Attachment Points N2 - For transport operations according IAEA regulations SSR-6, the package shall be securely stowed and the package shall be capable to withstand specific effects, e.g. accelerations, during routine transport conditions. The supporting IAEA Advisory Material SSG-26 provides information how to do that. General information and detailed load factors for use in safety demonstrations are provided. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration factors vary between different countries and lead to difficulties during the validation of foreign approval certificates. The background of the existing guidance including specified load values was not clear enough. The application of specified values and the boundary conditions, i.e. transport conditions, seemed to be improvable. The IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and, on the other hand the criteria which have to be considered for the attachment points. In addition, complementary questions relative to the operational aspects were discussed. Revised load values for different transport modes were proposed. The values are derived from standards and include safety factors now. As a result of those discussions, the international working group wrote new guidance material for stowage in transport, addressing all the previously quoted topics. T2 - WM2018 Conference CY - Phoenix, Arizona, USA DA - 18.03.2018 KW - Acceleration values KW - IAEA regulations KW - Routine conditions of transport PY - 2018 AN - OPUS4-44866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Völzke, Holger A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Nehrig, Marko A1 - Wolff, Dietmar A1 - Wille, Frank T1 - Basic of Transport and Storage of Radioactive Materials N2 - Transport and storage of radioactive materials are performed in countries with policy of either closed or open nuclear fuel cycle. The related technologies have been established by accumulation of experiences and researches including demonstrative tests using full scale or scale models and analyses. Those are essential before commercialization, but are often costly and time consuming. Such demonstrative works should not be repeated meaninglessly, but can be shared through this kind of book and used by readers and the future generations to advance the technology effectively. This book systematically provides findings from lots of valuable researches on safety of transport and storage of radioactive materials under normal and accident conditions that have an impact on basis of safe regulations, designs, and operations. KW - Drop testing KW - Metal seals KW - Transport safety KW - Aging management KW - Package PY - 2018 SN - 978-981-3234-03-1 U6 - https://doi.org/10.1142/10820 SP - 1 EP - 376 PB - Worlds Scientific Publishing Co Pte Ltd CY - Singapore AN - OPUS4-44867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Bauartprüfung von Transportbehältern für verglaste Abfälle aus der Wiederaufarbeitung N2 - Aufgrund zwischenstaatlicher Verträge werden in den nächsten Jahrzehnten zahlreiche Transporte von hoch radioaktiven Abfällen notwendig. Die BAM führt die Bauartprüfung von dafür vorgesehenen Castor-Behältern durch. In diesem Zusammenhang sind 17 Fallprüfungen durchgeführt worden. Ergänzt werden diese durch komplexe numerische Analysen, die die BAM prüft und eigene Modellierungen vornimmt. Der Beitrag stellt darüber hinaus das mehrjährige Validierungsverfahren zur Akzeptanz der bruchmechanischen Berechnungswerkzeuge vor. T2 - VdTÜV Forum Kerntechnik CY - Berlin, Germany DA - 16.04.2018 KW - Transport KW - Bauartprüfung KW - Fallprüfungen KW - Radioaktive Stoffe PY - 2018 AN - OPUS4-44853 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Finite element simulation of the crush of package components made of encapsulated wood N2 - Typical transport packages used in Germany are equipped with encapsulated wooden impact limiting devices. We would like to present the current status regarding the development of a Finite Element (FE) material model for the crush of wood for the FE-code LS-DYNA. The crush of is a phenomenon governed by macroscopic fracture. Here, we would like to reproduce fracture and failure mechanisms over the continuous volume. In a first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface. For the use for longitudinal compression of wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Wood KW - FEM PY - 2018 SP - Paper 18517, 1 EP - 12 AN - OPUS4-45091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport and storage casks for spent fuel and highlevelradioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series.Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Leakage rate KW - Transport packages KW - Seals KW - Radioaktive PY - 2019 SP - Paper 1147, 1 AN - OPUS4-49053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Design assessment by bam of a new package design for the transport of snf from a german research reactor N2 - For disposal of the German research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities. The Bundesanstalt für Materialforschung und -prüfung (BAM) assessed the mechanical and thermal package safety and performed drop tests. The activity release approaches and subjects of quality assurance and surveillance for manufacturing and operation of the package were assessed by BAM as well. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask a wood-filled impact limiter is installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel assemblies is arranged. For the safety case a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop test were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of Finite-Element-Analysis (FEA) used for the safety analysis of the package design. The finite-element models incorporated in the package design safety report include the cask body, the lid system, the inventory and the impact limiters with the fastening system. In this context special attention was paid to the modeling of the encapsulated wood-filled impact limiters. Additional calculations using the verified numerical models were done by the applicant and assessed by BAM to investigate e.g. the brittle fracture of the cask body made of ductile cask iron within the package design approval procedure. This paper describes the package design assessment from the view of the competent authority BAM including the applied assessment strategy, the conducted drop tests and the additional calculations by using numerical and analytical methods. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Numerical modelling KW - Drop test KW - Assessment method KW - Ductile cast iron KW - Package design KW - Experimental testing PY - 2019 SP - Paper 1176, 1 AN - OPUS4-49054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Schilling, O. A1 - Kuschke, Christian A1 - Darnstädt, A. A1 - Schubert, Sven A1 - Günther, U. A1 - Wille, Frank T1 - Requirements for management systems for manufacturing of transport packages: the new revision of BAM-GGR 011 guideline N2 - In accordance with IAEA SSR-6 para 306 a management system shall be established and implemented to ensure compliance with the relevant provisions of the IAEA regulations. BAM has issued an update of the guideline: the BAM-GGR 011. The new revision describes necessary quality assurance measures for design, manufacture, testing, documentation, use, maintenance and inspection of packagings for package designs requiring competent authority approval for the transport of radioactive material. The measures can be categorised as system-related and design-related. They are independently approved and monitored by the German competent authority BAM and its authorised expert (BAM/T). The qualification of the organisation applying for the design approval certificate is reviewed in the context of the design approval procedure. The quality assurance measures for manufacture consist of three main steps. Pre-assessment of manufacturing documents such as quality plans, specifications etc., Manufacturing inspections according the pre-assessed documents and inspection before commissioning including documentation review. Periodic inspections during operation as well as relevant specifications for use and maintenance ensure that the properties specified in the approval certificate are preserved over the package life time. Special provisions for the return on experience regarding operational feedback for design, manufacture, use, maintenance and inspection are given. Special focus shall be given here to the rearranged and meanwhile established system of manufacturing inspections. This includes more transparent roles for a) the Producers authorised inspection 11282 representative, b) the independent inspection expert (S), acting on behalf of the manufacturer with acceptance of BAM, and c) BAM or its authorised expert (BAM/T). Additional attention shall be drawn to the management of deviations during manufacturing and provisions for maintenance and periodic inspections. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Quality assurance KW - Transport KW - Manufacturing KW - Surveillance KW - Radioactive material PY - 2019 SP - Paper 1128, 1 AN - OPUS4-49059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Debruyne, M. A1 - Eckert, B. A1 - Gauthier, F. A1 - Ben Ouaghrem, K. A1 - Le Bars, I. A1 - Jouve, A.-C. A1 - Cordier, N. T1 - Assessment of safety demonstrations relative to packages containing UF6 N2 - The safety demonstrations realized by applicants in the case of approval request for the package designs containing enriched UF6 have to take into account some specific technical issues. Concerning the shipment of enriched UF6, the package designs consist in general of a filled 30B cylinder surrounded by an overpack. The description of the content, considering the UF6 origin, i.e. natural or reprocessed, shall be clearly justified especially when the UF6 isotopic composition exceeds the limits specified in ASTM standards. Concerning the containment of the UF6, the applicant shall demonstrate in all conditions of transport the leak-tightness of the valve and plug of the cylinders filled with enriched UF6. In this regard, when mechanical justifications are based on numerical calculations, the absence of contact between these components of the cylinder and the internal surfaces of the overpack after the regulatory drop tests shall be shown to respect the IAEA regulations. Furthermore, the representativeness of the ballast used to simulate the behaviour of the UF6 loaded within the cylinder shall be justified if drop tests are performed. The representativeness of the ballast should also be justified for numerical calculations. In addition, the applicant shall demonstrate that the melting temperature of the valve and the plug, including the tinned joint, will not be exceeded during the regulatory fire test. Finally, specific provisions relative to the use of plugs and the maintenance of cylinders should be included in the safety analysis report. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Valve KW - Fire test KW - Content simulation KW - UF6 KW - Intumescent material PY - 2019 SP - Paper 1208, 1 EP - 8 AN - OPUS4-49094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Apel, Andreas A1 - Kuschke, Christian A1 - Moutarde, M. A1 - Desnoyers, B. A1 - Kalinina, E. A1 - Ammerman, D. T1 - ISO-Standard and IAEA guidance material for package load attachment Points - Current approaches and developments N2 - For transport package design and operation according to the IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. The proposed acceleration values will be compared to those measured during recent multi-modal testing by Sandia National Laboratories that measured the acceleration levels experienced by a spent fuel flask during heavy-haul truck, sea, and rail transport. The ISO standard 10276 is dealing with the load attachment systems of packages as well. This standard considers the trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology, different analysis approaches for strength and fatigue analysis and proposed revised text for the ISO standard for international discussion. The finite-element analysis approach incl. appropriate acceptance criteria are described and referenced. The paper describes relevant tie-down aspects, gives background argumentation relevant to analysis approaches, and tries to support harmonized application of the revised IAEA guidance material and the future revised ISO standard. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Load attachment KW - Stowage KW - Trunnion KW - Bolt design KW - Retention KW - Acceleration KW - Transport KW - Load cycles PY - 2019 SP - Paper 1130, 1 EP - 10 AN - OPUS4-49095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Desnoyers, B. A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Apel, Andreas A1 - Kalinina, E. A1 - Ammerman, D. T1 - ISO-Standart and IAEA guidance material for package load attachment points N2 - For transport package design and operation according to the IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. The proposed acceleration values will be compared to those measured during recent multi-modal testing by Sandia National Laboratories that measured the acceleration levels experienced by a spent fuel flask during heavy-haul truck, sea, and rail transport. The ISO standard 10276 is dealing with the load attachment systems of packages as well. This standard considers the trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology, different analysis approaches for strength and fatigue analysis and proposed revised text for the ISO standard for international discussion. The finite-element analysis approach incl. appropriate acceptance criteria are described and referenced. The paper describes relevant tie-down aspects, gives background argumentation relevant to analysis approaches, and tries to support harmonized application of the revised IAEA guidance material and the future revised ISO standard. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Load attachment KW - Stowage KW - Trunnion KW - Bolt design KW - Retention KW - Acceleration KW - Transport KW - Load cycles PY - 2019 AN - OPUS4-49096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Mechanical and thermal assessment by BAM of a new package design for the transport of SNF from a german research reactor N2 - For disposal of the research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities on the basis of International Atomic Energy Agency (IAEA) requirements. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask the wood-filled impact limiters are installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel elements is arranged. This design has been assessed by the Bundesanstalt für Materialforschung und -prüfung (BAM) in view to the mechanical and thermal safety analyses, the activity release approaches, and subjects of quality assurance and surveillance for manufacturing and operation of the package. For the mechanical safety analyses of the package a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop tests were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of finite-element (FE) models applied in the safety analysis of the package design. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Mechanik KW - radioaktives Material KW - Transportbehälter KW - Antragsverfahren KW - Zulassungen KW - Typ-B Versandstück KW - Thermik PY - 2020 VL - 2020 SP - 1 EP - 7 PB - ASME CY - New York AN - OPUS4-51103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Outcomes of three large scale fire reference tests conducted in BAM fire test facility N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the Surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind Speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a Radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Fire KW - Testing KW - Large scale testing KW - Calorimeter KW - Heat flux PY - 2020 SP - 1 EP - 9 PB - ASME CY - New York AN - OPUS4-51192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Ageing aspect in the safety evaluation of special form radioactive material N2 - In accordance with the IAEA transport regulations Special Form Radioactive Material (SFRM) is either an indispersible solid radioactive material or a sealed capsule containing radioactive material. The design of special form radioactive material has to resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval shall include besides the required test program (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance and inspection. The specified quality assurance measures have to assure, that every specimen of the approved design is produced in the same verified quality and every specimen must be able to survive the severe mechanical and thermal tests at any time of its working life. Due to the long-term use of SFRM the consideration of ageing is an important aspect in the approval procedure by BAM, the competent authority for SFRM approval in Germany. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. So, besides of radioactive content, corrosion is a main factor for possible design degradation. This paper will describe major influencing factors to be taken into account to assess the ageing behavior of a SFRM design and will emphasize that there is a need for a regulatory specification of a SFRM-working life as basis for the aging evaluations. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Special form radioactive material KW - Transport KW - Ageing KW - Material KW - Safety assessment KW - Management system PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3659.xml SN - 987-981-14-8593-0 SP - Paper 3659,1 EP - 5 PB - Research Publishing CY - Singapore AN - OPUS4-50969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Safety Evaluation of a Package for Radioactive Waste by Full-Scale Drop Testing N2 - As part of the evaluation of a package for the safe transport of radioactive waste the regulations of the IAEA International Atomic Energy Agency shall be fulfilled. The regulations define requirements for the package and specify mechanical and thermal test conditions. Different methods are allowed for the test performance to demonstrate compliance with the regulations. Next to calculational approaches and the use of models of an appropriate scale, the performance of full-scale testing with prototype packages respectively full-scale models is applied. The use of full-scale models has several advantages within the complete safety assessment procedure for a transport package approval. Scaling and corresponding similarity questions don’t have to be considered, additional material investigations can be limited and analyses to transfer test results to the original package design are reduced in number and complexity. Additionally, experience for future serial design procedures can be built up during manufacturing and assembling of the test model. BAM operates different drop and fire test facilities south of Berlin, Germany. BAM has started to perform a drop test campaign with a full-scale model of 120 metric tons weight for a transport package approval procedure. The paper describes experience with test preparation, drop performance and additional analyses. The measurement concept is explained and test goals regarding the package safety assessment and evaluation of safety margins are introduced. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Slap-down KW - Transport safety KW - Package KW - Drop test KW - Similarity KW - FEA KW - Radioactive waste PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3809.xml SN - 987-981-14-8593-0 SP - Paper 3809,1 EP - 8 PB - Research Publishing Services CY - Singapore AN - OPUS4-50981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Retaining Competence for Safe Transports of Radioactive Material N2 - The nuclear phase out in Germany will lead to a challenge finding skilled staff for all areas in nuclear business. Transport of spent fuel and high-level nuclear waste is an ongoing task over the next decades during the decommissioning of nuclear power plants and after the interim storage. The international regulations were adapted and address the issue of transports after storage now. The topic of aging and assessment of the development of the state-of-art technology are in focus. German research funds are supporting the investigations of future challenges of transport and storage of the nuclear heritage. BAM is involved and works on several topics related to the aging issue of packages. The behaviour of spent fuel claddings, long-term behaviour of metal and elastomeric gaskets and sensor/monitoring techniques of waste disposal are examples of research fields. T2 - 7th Nuclear Decommissioning & Waste Management Summit 2020 CY - London, UK DA - 12.02.2020 KW - Aging management KW - Transport KW - Spent fuel behaviour KW - Disposal PY - 2020 AN - OPUS4-50987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Aktuelles zur Weiterentwicklung der IAEA Transportempfehlungen N2 - Die IAEA Transportempfehlungen stellen die Basis der sicherheitstechnischen Anforderungen von Behältern zum Transport radioaktiver Stoffe dar. Sie gelten als international harmonsiert und werden regelmäßig an den Stand von Wissenschaft und Technik angepasst. Der laufende Revisionsprozess berücksichtigt mehr als 150 Vorschläge zur Weiterentwicklung des Regelwerks. Wesentliche Themen, die für die hoheitlichen Prüfungen im Zuständigkeitsbereich der BAM eine Rolle spielen, werden im Vortrag vorgestellt. Das Implementieren der besonderen sicherheitstechnischen Anforderungen an Zwischenlagerbehälter werden im Detail behandelt. Ebenfalls von Interesse ist die Weiterenticklung der Anforderungen, die den Einfluss des radioaktiven Inventars auf das Verschlusssystem bei Fallprüfungen diskutiert. T2 - 5. RAM-Behältersicherheitstage CY - Berlin, Deutschland DA - 16.03.2016 KW - IAEA KW - Transportbehälter KW - Sicherheitstechnische Auslegung KW - Dual purpose casks KW - Fallprüfungen PY - 2016 AN - OPUS4-35655 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Gap analysis examples from periodical reviews of transport package design safety reports of SNF/HLW dual purpose casks N2 - Storage of spent nuclear fuel and high-level waste in dual purpose casks (DPC) is related with the challenge of maintaining safety for transportation over several decades of storage. Beside consideration of aging mechanisms by appropriate design, material selection and operational controls to assure technical reliability by aging management measures, an essential issue is the continuous control and update of the DPC safety case. Not only the technical objects are subject of aging but also the safety demonstration basis is subject of "aging" due to possible changes of regulations, standards and scientific/technical knowledge. The basic document, defining the transport safety conditions, is the package design safety report (PDSR) for the transport version of the DPC. To ensure a safe transport in future to a destination which is not known yet (because of not yet existing repository sites) periodical reviews of the PDSR, in connection with periodic renewals of package design approval certificates, have to be carried out. The main reviewing tool is a gap analysis. A gap analysis for a PDSR is the assessment of the state of technical knowledge, standards and regulations regarding safety functions of structures, systems and components. T2 - PSAM 12 - Probabilistic safety assessment and management CY - Honolulu, Hawaii, USA DA - 22.06.2014 KW - Dual Purpose Casks KW - Aging KW - Transportation KW - Periodical Review PY - 2014 UR - http://psam12.org/proceedings/paper/paper_259_1.pdf SP - Paper 259, 1 EP - 9 AN - OPUS4-32574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Wille, Frank A1 - Nehrig, Marko A1 - Feldkamp, Martin ED - Sorenson, K.B. T1 - Thermal performance of transportation packages for radioactive materials N2 - Prevention of damage caused by heat is one of the objectives during package safety evaluation. This chapter describes basics of heat transfer and major aspects of regulatory requirements. Package temperature criteria and fire test conditions are explained. Special package design features regarding material properties and safety evaluation concepts are discussed. Experimental fire testing is performed by pool fire or with the help of a furnace. Analysis by numerical or analytical approaches show temperature gradients and whether compliance with the regulatory requirements and specified design temperatures is met. The tightness of the package lid system influenced by geometry changes is in the focus of a holistic thermo-mechanical approach considering the entire mechanical and thermal load conditions according the regulatory requirements. KW - Package KW - Safety KW - Storage KW - Transport KW - Testing KW - Convection KW - Fire test KW - Heat KW - Insulation KW - Thermal analysis PY - 2015 SN - 978-1-78242-309-6 SN - 978-1-78242-322-5 U6 - https://doi.org/10.1016/B978-1-78242-309-6.00008-3 N1 - Serientitel: Woodhead publishing series in energy – Series title: Woodhead publishing series in energy IS - 78 SP - Chapter 8, 107 EP - 121 PB - Woodhead Publ. AN - OPUS4-33842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Sicherheitstechnische Begutachtung der strukturmechanischen Auslegung von Castor-Behältern N2 - Die Sicherheitsanforderungen, die an Behälter für den Transport radioaktiver Stoffe auf öffentlichen Verkehrswegen gestellt werden, orientieren sich an dem Gefährdungspotenzial des radioaktiven Inhalts. So müssen für den Transport abgebrannter Brennelemente oder hochradioaktiver Abfalle aus nuklearen Anlagen Behälter eingesetzt werden, die auch schweren Unfällen standhalten. Zu ihnen gehören z. B. die CASTOR®-Behälter (Cask for Storage and Transport of Radioactive Material). T2 - BTU Stahlbau-Symposium 2014 CY - Cottbus, Germany DA - 23.05.2014 PY - 2014 SN - 1611-5023 N1 - Serientitel: Schriftenreihe Stahlbau – Series title: Schriftenreihe Stahlbau IS - 8 SP - 33 EP - 40 AN - OPUS4-31148 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from German research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations [1]. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations [1]. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report [2]. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLRWM2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Drop test KW - Package testing KW - Dual purpose cask PY - 2019 SN - 978-0-89448-761-3 VL - 2019 SP - paper 27283, 1 EP - 7 PB - ANS AN - OPUS4-50619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - SNF KW - Drop testing KW - New package design PY - 2019 SP - Paper 19-A-1142,1 EP - 10 AN - OPUS4-50622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Authority Experience during Design Approval Procedure for Packages Loaded with Special Encapsulations for Damaged Spent Nuclear Fuel N2 - The first German package design approval certificate for a dual purpose cask intended for loading with damaged spent nuclear fuel was issued recently. BAM as part of the competent authority system in Germany carried out a comprehensive assessment procedure with respect to the mechanical and thermal design, the release of radioactive material and the quality assurance aspects of manufacturing and operation. Packages for the transport and storage of radioactive material have been assessed by BAM for many years, thus the common assessment procedure is well-known and good practice. Up to now only SNF without defects or HLW with well-defined properties were designated for long-term Interim storage and transports afterwards. Due to Germany’s nuclear phase out all other kinds of spent nuclear fuel in particular damaged spent nuclear fuel shall be packed as well. Damaged spent nuclear fuel needs a tight closure with Special encapsulations and clearly defined properties in Germany. In addition, these encapsulations shall be long-term durable, because they are not accessible after loading in a packaging within periodical inspections. The main difference to Standard package components is that encapsulations with a permanent closure achieve their specified conditions not after manufacturing but only during operation, after loading and closing. To ensure compliance with the specific conditions, special measures for quality assurance are necessary during operation of each encapsulation, e.g. drying and sealing, which were assessed by BAM. The present paper gives an overview of the conducted assessment from BAM and point out the findings concerning to the special closure lid of the approved encapsulation, which is screwed and welded. A wide verification concept is necessary to show the specific tightness under transport conditions. Together with quality assurance measures during first operation steps these encapsulations with damaged spent nuclear fuel can be handled like standard fuel assemblies in approved package designs. T2 - International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Transport package KW - Design approval KW - Spent nuclear fuel KW - Special encapsulation PY - 2019 SP - 1 EP - 9 AN - OPUS4-48749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Fire test KW - Propane gas KW - Calorimetric test KW - IAEA fire testing PY - 2019 SP - Paper 1141, 1 EP - 10 AN - OPUS4-48840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine a package dependent bar length for the iaea pin drop test N2 - The Federal Institute for Materials Research and Testing (BAM) is assessing the mechanical and thermal safety performance of packages for the transport of radioactive materials. Drop testing and numerical calculations are usually part of the safety case concepts, where BAM is performing the regulatory tests at their own test facility site. Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages. According to the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. Particularly with regard to the German transport- and storage cask designs, often made from ductile cast iron, an accurate determination of the puncture bar length to guarantee a load impact covering the worst case scenario can be imperative. If the fracture mechanical proof for the cask material shall be provided by a test, small deviations in the concentrated load applied can be decisive for the question if the cask fails or not. The most damaging puncture bar length can be estimated by iterative procedure in numerical simulations. On the one hand, a sufficient puncture bar length shall guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - 1-m-punch-bar-drop-test KW - Numerical approach KW - Bar length KW - Finite element analysis PY - 2019 UR - https://www.inmm.org/INMM-Resources/Proceedings-Presentations/PATRAM-Proceedings.aspx SP - 1 EP - 10 AN - OPUS4-49016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönfelder, Thorsten A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank ED - Schönfelder, Thorsten T1 - Design assessment of a dual purpose cask for damaged spent nuclear fuel N2 - German package design approvals were granted recently for dual purpose casks (DPC) intended for loading with encapsulated damaged spent nuclear fuel (DSNF). Comprehensive assessment procedures were carried out by the authority BAM with respect to the mechanical and thermal package design, the activity release of radioactive material and quality assurance aspects for manufacturing and operation of each packaging. The objective of each procedure was to verify the Package Design Safety Report (PDSR) and the relevant guidelines fulfils the requirements of the IAEA regulations. Previous approvals of German SNF package designs consider mainly standard fuel assemblies with defined specifications and properties for transport and interim storage. Due to the nuclear power phase-out in Germany all kinds of SNF, e.g. damaged spent fuel rods shall be packed in DPC now. Therefore specific requirements shall be considered in accordance with international experiences including IAEA technical reports. The main requirement for DSNF is a tight encapsulation with specific defined properties under transport and storage conditions. Due to the interim storage period of currently up to 40 years the encapsulation with DSNF in the casks shall also be long term durable. Thus specific loading and drying procedures are necessary and had to be qualified during the approval process. BAM assessed these drying procedures and could confirm the long-term behaviour of the encapsulation and the suitability of the drying equipment. This special equipment was qualified in a “cold handling”. In addition, it was shown that the behaviour of the test equipment used in the qualification process was comparable with the original equipment, e.g. test fuel rods or test encapsulation. In the development of the drying process, experience was obtained in how to put the requirements of the IAEA regulations and related IAEA technical reports into practice. The paper gives an overview of approval assessment and testing experience made by BAM and point out the main resulting requirements on drying processes for these kinds of encapsulations with DSNF. T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2019 SP - Paper 1204, 1 EP - 10 AN - OPUS4-48685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Scheidemann, Robert A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Drop tests assessment of internal shock absorbers for packages loaded with encapsulations for damaged spent nuclear fuel N2 - Damaged spent nuclear fuel (DSNF) can be loaded in German dual-purpose casks (DPC) for transport and interim storage. Encapsulations are needed to guarantee a safe handling and a tight closure, separated from the package enclosure. These encapsulations shall be durable and leak-tight for a long storage period, because they are usually not accessible within periodical inspections of the DPC. Due to the general design of DPCs for standard fuel assemblies, specific requirements have to be considered for the design of encapsulations for DSNF to ensure the loading in existing package designs. Especially the primary lid system of a DPC is designed for maximum loads due to the internal impact of the content during drop test conditions. The main difference of encapsulations for damaged spent nuclear fuel is that they have usually a much higher stiffness than standard fuel assemblies. Therefore the design of an internal shock absorber, e.g. at the head of an encapsulation is required to reduce mechanical loads to the primary lid system during impacts. BAM as part of the German competent authority system is responsible for the safety assessment of the mechanical and thermal package design, the release of radioactive material and the quality assurance of package manufacturing and operation. Concerning the mechanical design of the encapsulation BAM was involved in the comprehensive assessment procedure during the package design approval process. An internal shock absorber was developed by the package designer with numerical analyses and experimental drop tests. Experimental drop tests are needed to cover limiting parameters regarding, e.g. temperature and wall thickness of the shock absorbing element to enable a detailed specification of the whole load-deformation behavior of the encapsulation shock absorber. The paper gives an overview of the assessment work by BAM and points out the main findings which are relevant for an acceptable design of internal shock absorbers. The physical drop tests were planned on the basis of pre-investigations of the applicant concerning shape, dimension and material properties. In advance of the final drop tests the possible internal impact behavior had to be analyzed and the setup of the test facility had to be validated. The planning, performance and evaluation of the final drop tests were witnessed and assessed by BAM. In conclusion it could be approved that the German encapsulation system for damaged spent nuclear fuel with shock absorbing components can be handled similar to standard fuel assemblies in existing package designs. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Encapsulations for damaged spent nuclear fuel KW - Drop tests KW - Internal shock absorber KW - Design assessment of RAM packages PY - 2020 SP - 1 EP - 9 AN - OPUS4-51546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Komann, Steffen T1 - Aktuelle Entwicklungen und Prüfungen der BAM N2 - Es werden im Rahmen des Vortrages die aktuellen Prüftätigkeiten und Arbeitsschwerpunkte der BAM vorgestellt. Des Weiteren wird darüber berichtet was es Neues in der aktuellen Normen- und Richtlinienentwicklung gibt. T2 - Informationsveranstaltung zum Transport radioaktiver Stoffe CY - Online meeting DA - 14.04.2021 KW - Gefahrgutregeln der BAM KW - Fallprüfungen KW - Radioaktive Materialien KW - Zulassung PY - 2021 AN - OPUS4-52493 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Behavior of wood filled impact limiters during the IAEA thermal test N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that transport casks meet the IAEA safety requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. It is required that the mechanical tests have to produce maximum damage, taking into account the thermal test. Furthermore, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. Concerning the thermal test, the IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur caused by smoldering of the wood. This effect should be considered within the safety assessment of the package. A heat wave from the fire could overlap with the additional energy from the impact limiter in the sealing system. In 2015 BAM conducted small scale fire tests with wood filled metal drums showing continuing combustion processes during the cooling down phase. As not much is known about smoldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the most damaging energy flow from the impact limiter to the containment system in dependence of time. More research has to be done to develop models to examine the effects of smoldering impact limiters on the containment of packages for the assessment. The process of smoldering is described with regard to the requirements in the thermal safety assessment. Parameters influencing the smoldering process are identified. BAM operates test facilities to examine the issue of mechanical damage, combustion and heat transfer of packages for transport of radioactive material. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smoldering under the consideration of relevant regulatory boundary conditions. T2 - ASME 2017 Pressure Vessels and Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Fire test KW - Wood KW - IAEA KW - Smoldering KW - Smouldering KW - Shock absorber KW - Thermal test KW - Combustion KW - Impact limiter PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A038, 1 EP - 9 AN - OPUS4-43172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank A1 - Schönfelder, Thorsten T1 - Aspects of assessment of packages with wood filled impact limiters during fire tests N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that the transport casks meet the mechanical and thermal IAEA regulatory test requirements. According to the accident conditions of transport it is mandatory to expose the specimens to a cumulative effect by mechanical and thermal impacts. The mechanical tests consist of a free drop from 9 m onto a flat unyielding target and a 1 m drop onto a puncture bar. After damage caused by mechanical test sequences the package has to withstand a severe fire scenario. Corresponding to the IAEA advisory material it is required that the impact attitudes for the 9 m drop test and for the puncture test have to be such as to produce maximum damage, taking into account the thermal test. Moreover, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. During and following the thermal test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur. This effect should be considered within the safety assessment of the containment. Thermal effects at the closure system of the cask, which might result in an elevated activity release, have to be excluded. BAM conducted small scale tests with wood filled metal buckets showing continuing combustion processes during the cooling down phase. These test results are presented. As not much is known about smouldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the maximum damaging energy flow from the impact limiter to the containment system. More research has to be done to develop models to examine the effects of smouldering impact limiters on the containment of packages for the transport of radioactive material. Aspects of assessment and its difficulties are shown. BAM as a competent authority for the approval of transport casks for radioactive material in Germany operates the test facilities to examine the issue of mechanical damage, combustion and heat transfer for such kind of package systems. For this purpose the knowledge from real drop tests with casks of a mass partly over 100 tons was transferred to a test application. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smouldering under the consideration of relevant regulatory boundary conditions. The process of smouldering is described with regard to the requirements in the thermal assessment of safety of packages for the transport of radioactive material. Requirements concerning the pre-damage of packages for the maximum damage of impact limiters are discussed. Parameters influencing the smouldering process are identified. T2 - WM 2017 Conference CY - Phoenix, AZ, USA DA - 05.03.2017 KW - Fire test KW - Wood KW - Combustion KW - Smouldering KW - Smoldering KW - Impact limiter KW - Shock absorber KW - Thermal test KW - IAEA PY - 2017 SN - 978-0-9828171-6-2 SP - 1 AN - OPUS4-40157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Nasyrow, R. A1 - Papaioannou, D. A1 - Vlassopoulos, E. A1 - Rondinella, V. T1 - Analysis of parameters affecting the bending behavior of spent fuel rods N2 - Transport packages for spent nuclear fuel have to be assessed with respect to specific transport conditions which are defined in the regulations of the International Atomic Energy Agency. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package capabilities under these conditions. Cracks or failures in the fuel rod cladding can cause the release of gas, volatiles or fuel particles into the cavity. The amount of substances in the cavity has to be considered in the assessment of the activity release and criticality safety. The mechanical analysis of the compound system formed by the fuel rod cladding and the spent fuel pellets is very difficult due to the limited knowledge of the material properties and the insufficient understanding of the interaction between pellets and cladding and between adjacent pellets. The variation of fuel assembly properties regarding cladding material, burn-up and the history of usage makes reliable predictions of the fuel rod behavior even harder. For a better understanding about the behavior of spent fuel rods, JRC-ITU and BAM have started a joint research project. In this context, JRC-ITU has developed a test device which allows quasi-static 3-point-bending test on fuel rod segments in the hot cell. The loads are applied with respect to the boundary conditions of the activity release assessment. This paper deals with the numerical calculation of a single fuel rod segment under bending load. The aim is to identify the governing mechanical parameters by the variation of constitutive assumptions, contact conditions, inner constraints, etc. This knowledge helps for the interpretation of the experimental results. Furthermore, the improved understanding about the behavior of the cladding-pellets system will be beneficial for the assessment of spent fuel transport conditions. T2 - PATRAM 2016 - 18th International symposium on the packaging and transportation of radioactive materials CY - Kobe, Japan DA - 18.09.2016 KW - Transport packages KW - Finite element methods KW - Spent fuel assessment PY - 2016 SP - Paper 2012, 1 AN - OPUS4-40000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nasyrow, R. A1 - Papaioannou, D. A1 - Rondinella, V. A1 - Vlassopoulos, E. A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Caruso, St. T1 - Bending test device for mechanical integrity studies of spent nuclear fuel rods N2 - This paper presents data obtained from experiments performed using a bending test set-up developed at the Joint Research Centre (JRC) – Karlsruhe, for spent fuel segment testing. Adjustable sample holders, loading modes and other experimental conditions can be im- plemented in the experiments to study the effects of different deformation ranges up to cladding failure. The experimental set-up has been adapted to hot cell remote controlling and has a modular configuration, which allows manual and motor-driven loading option. The device has been calibrated on hydrogenated, unirradiated cladding tube segments filled with alumina pellets. The final application of present set-up is to test non-defueled spent fuel rod segments, pressurized to the original spent fuel rod pressure level. The range of applicability of this device, the scope of the experimental program and the first results from actual bending tests will be discussed. T2 - PATRAM 2016 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Kobe, Japan DA - 18.09.2016 KW - Hot cell testing KW - Spent fuel assessment KW - Transport packages PY - 2016 SP - Paper 6023, 1 AN - OPUS4-40002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette T1 - Assessment approaches of mechanical behavior of SNF under transport package test conditions N2 - German packages for the transport of spent nuclear fuel are assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by German authority BAM for the evaluation of spent fuel behavior within the package design approval procedure. Specific test conditions will be analyzed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods, which can cause release of gas, volatiles, fuel particles or fragments, have to be properly considered in these assumptions. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally, and require a conservative approach. In this context some practical approaches based on experiences by BAM within safety assessment of packages for transport of spent fuel will be discussed. Ongoing research activities to investigate SNF mechanical behavior in view of gas and fissile material release under transport loads are presented. T2 - International High-Level Radioactive Waste Management Conference, IHLRWM 2017 CY - Charlotte, NC, USA DA - 09.04.2017 KW - Brennelementverhalten KW - Spent fuel behavior KW - Hüllrohr KW - Kritikalität KW - Aktivitätsfreisetzung KW - Mechanisches Verhalten KW - Cladding KW - Criticality PY - 2017 SP - 472 EP - 475 AN - OPUS4-39898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette T1 - Assessment approaches of mechanical behavior of SNF under transport package test conditions N2 - German packages for the transport of spent nuclear fuel are assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by German authority BAM for the evaluation of spent fuel behavior within the package design approval procedure. Specific test conditions will be analyzed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods, which can cause release of gas, volatiles, fuel particles or fragments, have to be properly considered in these assumptions. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally, and require a conservative approach. In this context some practical approaches based on experiences by BAM within safety assessment of packages for transport of spent fuel will be discussed. Ongoing research activities to investigate SNF mechanical behavior in view of gas and fissile material release under transport loads are presented. T2 - International High-Level Radioactive Waste Management Conference, IHLRWM 2017 CY - Charlotte, NC, USA DA - 09.04.2017 KW - Spent fuel KW - Cladding failure KW - Criticality analysis KW - Encapsulation PY - 2017 AN - OPUS4-39908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Wille, Frank A1 - Schönfelder, Thorsten T1 - German concept to ensure transportability of SNF packages after interim storage N2 - In Germany the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved transport package design in accordance with the international IAEA transport regulations as well. The storage of spent nuclear fuel and high-level waste in dual purpose casks (DPC) is related with the challenge of maintaining safety for transportation over several decades of storage. Besides consideration of aging mechanisms by appropriate design, material selection and operational controls to assure technical reliability by aging management measures, an essential issue is the continuous control and update of the DPC safety case. Not only the technical objects are subject of aging but also the safety demonstration basis is subject of “aging” due to possible changes of regulations, standards and scientific/technical knowledge. To ensure a safe transport in future to a destination which is not known yet (because of not yet existing repository sites) periodical reviews of the Package Design Safety Report (PDSR), in connection with periodic renewals of package design approval certificates, have to be carried out. T2 - International High-Level Radioactive Waste Management Conference, IHLRWM 2017 CY - Charlotte, NC, USA DA - 09.04.2017 KW - Dual purpose casks KW - Interim storage KW - Transportability PY - 2017 SP - 476 EP - 481 AN - OPUS4-39919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Considerations on spent fuel behavior for transport after extended storage N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. In this paper, the mechanical behavior of high burn-up spent fuel assemblies (> approx. 50 GWd/tHM, value averaged over the fuel assembly) under transport conditions is analyzed with regard to the assumptions which are used in the Containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. Additionally, the gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated. Considerations and knowledge gaps for the transport after extended interim storage are issues of growing interest. In this context, practical approaches are discussed based on the experience of BAM within the safety assessment of packages approved for transport of spent nuclear fuel. KW - Transport packages for radioactive material KW - Spent nuclear fuel PY - 2018 VL - 83 IS - 6 SP - 488 EP - 494 PB - Hanser AN - OPUS4-47359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Sterhaus, Jens A1 - Apel, Andreas T1 - Standards and guidelines for design of trunnions of RAM transport packages N2 - Trunnion systems of packages for the transport of radioactive materials have to guarantee the safe handling of package during crane operations (lifting, tilting) and to secure package tie down to the transport vehicle, if the trunnions are used as attachment points during transport. The design of trunnions is based on IAEA Regulations SSR-6, the supporting Advisory Material SSG-26 and further appropriate technical standards and/or guidelines. For package approval procedures in Germany the guideline BAM-GGR 012 has to be applied. If a package is handled inside a german nuclear power plant, the standard KTA 3905 has to be fulfilled additionally. In this paper the requirements of KTA 3905 concerning the trunnion systems as load attaching points (LAP) are discussed in connection with the recommendations in the guideline BAM-GGR 012. This guideline is prepared at BAM Federal Institute for Materials Research and Testing for analysis and assessment of bolted lid and trunnion systems of Type B(U) transport packages. The Quality assurance questions concerning trunnion systems are discussed as well. T2 - WM 2017 conference CY - Phoenix, USA DA - 05.03.2017 KW - RAM transport package KW - Trunnions PY - 2017 SP - Paper 17365, 1 EP - 12 AN - OPUS4-40815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport casks for spent fuel and high radioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series. Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prag, Czech Republic DA - 15.08 2018 KW - Containment KW - Spent fuel KW - Leakage rate PY - 2018 VL - 7 SP - PVP2018-84089, 1 EP - 8 AN - OPUS4-46533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine the correct puncture bar length for the IAEA puncture bar drop test N2 - Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages for the transport of radioactive material. According with the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. The most damaging puncture bar length can be estimated by iterative processes in numerical simulations. On the one hand, a sufficient puncture bar length has to guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - ASME Pressure Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Length of puncture bar KW - Mechanical assessment KW - Numerical simulation KW - Puncture bar test KW - Transport of radioactive materials PY - 2018 SP - PVP2018-84614, 1 EP - 7 AN - OPUS4-46538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette T1 - Spent fuel behavior under Transport Conditions N2 - German packages for the transport of spent nuclear fuel are assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by German authority BAM for the evaluation of spent fuel behavior within the package design approval procedure. Specific test conditions will be analyzed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods, which can cause release of gas, volatiles, fuel particles or fragments, have to be properly considered in these assumptions. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally, and require a conservative approach. In this context some practical approaches based on experiences by BAM within safety assessment of packages for transport of spent fuel will be discussed. Ongoing research activities to investigate SNF mechanical behavior in view of gas and fissile material release under transport loads are presented. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - ENSA KW - SNL KW - Real transport KW - IAEA KW - Drop test KW - Multi-Modal Transportation Test KW - Radioactive KW - ACT KW - NCT KW - Hot cell KW - Activity release KW - Fuel rod KW - Fuel rods KW - Burn-up KW - Cladding alloy KW - Criticality safety analysis KW - Containment analysis KW - Fuel assemblies KW - Spent fuel PY - 2018 AN - OPUS4-46880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erenberg, Marina A1 - Bletzer, Claus A1 - Feldkamp, Martin A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Experimental investigations of the burning behaviour of transport package impact limiters and of fire spread impact onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m3 was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Shock absorber KW - Impact limiter KW - Wood KW - Thermal testing KW - Fire KW - Smoldering KW - IAEA KW - Fire test PY - 2018 SN - 978-0-7918-5170-8 VL - PVP2018 SP - 84714-1 EP - 84714-10 AN - OPUS4-46984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Development of a material model for the crush of spruce wood N2 - Typical transport packages used in Germany are equipped with wooden impact limiting devices. In this paper we give an overview of the latest status regarding the development of a finite element material model for the crush of spruce wood. Although the crush of wood – mainly in longitudinal direction – is a phenomenon governed by macroscopic fracture and failure of wood fibres we smear fracture and failure mechanisms over the continuous voume. In first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface written in terms of the first two stress invariants. The evolution of the yield surface in the existing model depends on the volumetric strain only. For the use with spruce wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - ASME PVP 2017 CY - Waikaloa, HY, USA DA - 16.07.2017 KW - Chrush KW - Spruce KW - Wood KW - FEM PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A037, 1 EP - 9 AN - OPUS4-41613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of the containment system of transport casks for spent fuel and high radioactive waste. The containment systems of such transport casks usually include bolted lids with metallic or elastomeric seals. Scaled cask models are often used for providing the required mechanical and thermal tests series. Leak tests have been conducted on those models. It is common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions and open points of the transferability of scaled test results to the fullscale design of the containment system will be discussed. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15. Mai 2018 KW - Transport packages KW - Radioactve KW - Seals KW - Leakage rate PY - 2018 AN - OPUS4-46734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Wille, Frank ED - Saegusa, Toshiari ED - Sert, Gilles ED - Völzke, Holger ED - Wille, Frank T1 - Internal cask content collision during drop tests N2 - The interaction between the package lid system and internal Content during mechanical drop testing is a decisive matter in evaluating Impact loads and the safety of the package. In the case of movable contents ist impact onto the inner side of the package lid can cause additional load peaks on the lid and the lid bolts. Some aspects of this issue were discussed on the basis of experimental results from instrumented drop tests with transport casks and on the basis of analytical approaches. KW - Transport casks KW - Drop tests KW - Internal collision PY - 2018 SN - 978-981-3234-03-1 SP - Chapter 7, 103 EP - 120 PB - World Scientific Publishing CY - Singapore ET - 1 AN - OPUS4-47539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive materials transport PY - 2023 SP - 1 EP - 10 AN - OPUS4-57732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Linnemann, Konrad A1 - Wille, Frank A1 - Reiche, Ingo A1 - Ramsay, J. T1 - New SCO-iii regulations to ship large comonents as surface contaminated objects N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. T2 - PATRAM22 CY - Juan les Pins, France DA - 11.06.2023 KW - Gefahrgut KW - Radioaktive Stoffe KW - Rückbau kerntechnischer Anlagen KW - Transport PY - 2023 SP - 1 EP - 8 AN - OPUS4-57750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Introduction of the German ageing management guide for packages for transport of radioactive materials N2 - The consideration of ageing mechanisms is with integration of the new para 613A into IAEA SSR-6 (Rev. 1) now obligatory for the design of transport packages. In addition, para 809(f) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that all packaging components and radioactive contents have been maintained during storage in a manner that all requirements specified in IAEA SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled a guideline for the implementation of ageing assessment and of the measures for ageing management of the approval procedure based on requirements of IAEA SSR-6 (Rev.1). The guideline is applicable only for packages requiring a competent authority approval. The paper aims to describe the structure of the guideline and the general approach for ageing management requirements. The type and amount of measures for ageing management depend mainly on the use of the package and on the ageing effects for the component, which result from relevant ageing mechanisms during package operation time. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan (AMP). These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program (ASP) and, if necessary, a gap analysis program shall be developed. The ageing management documentation (AMD) ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - PATRAM22 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Guide KW - Ageing KW - Mechanism KW - Package KW - Management PY - 2023 SP - 1 EP - 10 PB - World Nuclear Transport Institute (WNTI) CY - London AN - OPUS4-57770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Radioaktive Stoffe KW - Beförderung KW - Zulassung KW - Strahlenschutz PY - 2023 AN - OPUS4-57781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Ttransport KW - Radioactive material KW - Sealed sources KW - Ageing PY - 2023 SP - 1 EP - 6 AN - OPUS4-57786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Wille, Frank A1 - Schubert, Sven T1 - Neue Regel für das Alterungsmanagement N2 - Die Regelwerksanforderungen für Verpackungen für den Transport radioaktiver Stoffe basieren auf den Empfehlungen der IAEA und werden über die verkehrsträgerspezifischen internationalen Regelwerke in nationales Recht umgesetzt. Um die Anforderungen des Regelwerkes zu erläutern, entwickelt die Bundesanstalt für Materialforschung und -prüfung (BAM) Gefahrgutregeln (BAM-GGR), welche die Entwickler, Hersteller und Betreiber von Behältern über die von der BAM angewandten Verfahren bei der Umsetzung gesetzlicher Bestimmungen informieren und unterstützen sollen. KW - Gefahrgut KW - Radioaktive Stoffe KW - Alterung KW - Transport PY - 2023 VL - 2023 IS - 9 SP - 16 EP - 18 PB - Heinrich Vogel CY - München AN - OPUS4-58577 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Investigations of Aged Metal Seals for Transport Package Safety Assessment N2 - Acceptable limits for activity release from transport casks for high-level radioactive material specified in the IAEA regulations must be kept by the integrity of cask body and the cask sealing system. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. One of the fundamental aspects in assessment is the specification of conservative package design leakage rates. To ensure the required package tightness for both, storage, and transport of the cask before and after storage usually metal seals of the Helicoflex® Type are used. Due to the long-term use the seal behavior is influenced by temperature and time. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport specified in the regulations can have a significant effect on the leak tightness of the sealing system. Whereas the safety for application of new, non- aged Helicoflex® seals is verified sufficiently, there are still technical data gaps concerning the efficiency of aged Helicoflex® seals. BAM performed experiments to learn more about the sealing efficiency of aged Helicoflex® seals with Aluminum and Silver outer jackets. The seals were compressed in test-flanges and for artificial ageing the complete flange systems were stored in an oven for several month at a high temperature. During the compression and decompression tests after the aging, load-deformation characteristics of the seals, and leakage rates were measured. With these tests a load situation was simulated, which can occur in the regulatory drop test of the cask: Under high impact loads the bolted lid can lift a little for a short moment, allowing a little movement of the seal, so that the contact area can change before compressing again. The poster presentation will show details about test conditions and first results. T2 - Interdisciplinary research symposium on the safety of nuclear disposal practices safeND2023 CY - Berlin, Germany DA - 13.09.2023 KW - Radioactive material KW - Sealing KW - Ageing KW - Leaktightnes PY - 2023 AN - OPUS4-58436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6, BS 7910 and API 579-1/ASME FFS1. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Transport Package KW - Welding KW - Fracture Mechanics PY - 2023 SP - 1 EP - 10 AN - OPUS4-57696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Gröke, Carsten A1 - Neumeyer, Tino T1 - Design assessment, approval of management systems and ageing aspects of transport packages for radioactive material not requiring competent authority approval of design N2 - Most transports of radioactive materials are carried out with packages not requiring competent authority approval of design. These encompass – in accordance with the IAEA SSR-6 regulations – packages of the classification excepted, Industrial packages Type 1, 2 and 3 and Type A packages. Currently an upsurge in number and variation of these package designs can be seen in Germany, resulting from the phase out of nuclear energy in Germany as well as e. g. increased use of radioactive material for medical purposes. A design assessment regarding the package safety is required in the international IAEA SSR-6 regulations. BAM operates facilities for the performance of all regulatory tests required such as drop towers for a wide range of package masses and dimensions, fire test, leak tightness measurements and pressure test facilities. Experiences with several package types are shown. Additionally, IAEA SSR-6 requires the establishment of a management system for design, manufacture, maintenance, and repair of the packaging as well as for the preparation, consigning, loading, carriage, unloading and receipt of the package. Relevant for Germany, BAM has published guidance material on the process of management system acceptance in the technical guide BAM-GGR 016. The requirements encompass quality management plans for the manufacturing of packages including independent manufacturing surveillance and specific instructions for operation, maintenance, and repair of packagings. Examples for management system specifics and requirements are given. Since the latest edition of the IAEA SSR-6 regulations an ageing evaluation including systematic ageing management measures are required for all kind of package types. BAM is going to update the guidance material BAM-GGR 016 to support the stakeholders with relevant information to fulfil the ageing aspect for packages not requiring competent authority approval. The paper explains how the ageing aspect may be included in the safety evaluation process and the management system measures and will give an outlook for the future guidance material. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Typ KW - Radioactive material KW - Non-approved PY - 2023 SP - 1 EP - 8 AN - OPUS4-57703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Fire KW - Testing KW - Hydrogen KW - Wood KW - Propane KW - Heat Flux KW - Fire Reference Package KW - Radioactive Material PY - 2023 SP - 1 EP - 10 AN - OPUS4-57721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas A1 - Wille, Frank T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 SP - 1 EP - 11 AN - OPUS4-57334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Evaluation of Heat Fluxes in Fire Reference Test Conducted in BAM Propane Gas Fire Test Facility N2 - Packages for the transport of intermediate- and high-level radioactive waste are designed to withstand severe accidents. The International Atomic Energy Agency (IAEA) has established specific mechanical and thermal tests. Packages for the transport of radioactive material must withstand these tests to comply with the Regulations for the Safe Transport of Radioactive Materials IAEA [IAEA (2018)]. A fire reference package was developed with the primary objective to demonstrate that the fire meets the regulatory requirements. Another aim is to characterise the boundary conditions of the actual fire as input parameters for thermo-mechanical simulations. A simple method to characterise the boundary conditions of a real steady state fire with a fire reference package is presented. The thermal test mainly consists of a 30 minute fully engulfing 800°C pool fire or an equally severe fire, such as a propane gas fire. The fire reference tests are performed prior to the actual fire test with the real package. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. To investigate local and overall heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for repeated use. The fire reference package presented in this paper represents the outer geometry of a small transport container for radioactive material and is used as a device in civil engineering. It is designed as a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 182 mm and a diameter of 102 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Open-air fire tests were performed in a BAM propane gas fire test facility with the fire reference package. The measured temperatures are used to determine the changes of heat fluxes into the fire reference package in relation to the package surface temperature. The calculated heat fluxes allow its fitting to express the thermal exposure as simple mathematical boundary condition. Therefore, in a first approach, fire properties such as adiabatic surface temperature (AST) as proposed by Wickström et al. (2007), convection coefficient and emissivity are determined mathematically fitting the heat flux development presented in this paper. The evaluated results provide an initial picture of local fire characteristics of the conducted propane gas fire and are a further development of previous works from Feldkamp et al. (2020). The results can be used in thermal and thermo-mechanical models to simulate the load on the real transport package in fire. The test shows that the examined propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) CY - Yokohama, Japan DA - 03.03.2024 KW - Fire KW - Propane KW - Heat Flux KW - Fire Reference PY - 2024 SP - 1 EP - 10 PB - IASMiRT AN - OPUS4-59679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Scheidemann, Robert T1 - Test Facilities for Radioactive Materials Transport and Storage Packagings at BAM N2 - BAM acts as authority and for service in safety assessment of packages for transport and storage of radioactive materials. We offer extensive test capabilities and application of analytical methods for design verification and simulation for all types of packages for the transport and storage of radioactive materials according with the international IAEA Regulations for the safe transport and for national storage acceptance criteria. BAM operates several test facilities for drop and stacking testing, leak testing and thermal testing. The large drop test tower allows dropping full-scale specimens up to 200,000 kg in any drop orientation as requested. The comprehensive test facilities combined with long-term experience, newest equipment and measurement devices according to the latest state-of-the-art technology ensures realisation of complex test campaigns for package safety evaluation. Beyond that, non-destructive and destructive material test devices and experts are available. Equipment and application of all kinds of typical measurement categories can be offered for testing campaigns. In recent years we performed testing of full-scale type B package models with complex handling and preparation procedures. The results were contributed for different package design approval procedures. Type A packages mainly designed for medical related transport purposes, were continuously tested according to the transport regulations over recent years as well. Moreover, we work on research topics with relevance to package safety. The mechanical behaviour of lid closure systems under transport and storage conditions and the thermal behaviour of impact limiters were recently of special importance for the assessment competencies of BAM and were investigated under use of our test facilities. The paper describes the test facilities and capabilities for package design safety evaluation at BAM and shows examples from our recent work. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - IAEA KW - Fire test KW - Drop testing KW - Transport KW - Package PY - 2023 SP - 1 EP - 12 AN - OPUS4-57967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the abovementioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes DA - 11.06.2023 KW - Welding KW - Transport Package KW - Fracture Mechanics PY - 2023 SP - 1 EP - 11 AN - OPUS4-59421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Scheidemann, Robert T1 - Test facilities for transport and storage packages at BAM N2 - BAM acts as authority and for service in safety assessment of packages for transport and storage of radioactive materials. We offer extensive test capabilities and application of analytical methods for design verification and simulation for all types of packages for the transport and storage of radioactive materials according with the international IAEA Regulations for the safe transport and for national storage acceptance criteria. BAM operates several test facilities for drop and stacking testing, leak testing and thermal testing. The large drop test tower allows dropping full-scale specimens up to 200,000 kg in any drop orientation as requested. The comprehensive test facilities combined with long-term experience, newest equipment and measurement devices according to the latest state-of-the-art technology ensures realisation of complex test campaigns for package safety evaluation. Beyond that, non-destructive and destructive material test devices and experts are available. Equipment and application of all kinds of typical measurement categories can be offered for testing campaigns. In recent years we performed testing of full-scale type B package models with complex handling and preparation procedures. The results were contributed for different package design approval procedures. Type A packages mainly designed for medical related transport purposes, were continuously tested according to the transport regulations over recent years as well. Moreover, we work on research topics with relevance to package safety. The mechanical behaviour of lid closure systems under transport and storage conditions and the thermal behaviour of impact limiters were recently of special importance for the assessment competencies of BAM and were investigated under use of our test facilities. The paper describes the test facilities and capabilities for package design safety evaluation at BAM and shows examples from our recent work. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Transport KW - Drop testing KW - Fire test KW - IAEA KW - Package PY - 2023 AN - OPUS4-58088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -