TY - CONF A1 - Westphal, Anja A1 - Sahre, Mario A1 - Reinstädt, Philipp A1 - Griepentrog, Michael A1 - Beck, Uwe A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Hofmann, Detlef A1 - Gong, Xin A1 - Schukar, Vivien T1 - Altbekannter Watts-Elektrolyt, junge Hightech-Anwendung: Ni- und NiFe-Schichten als magnetostriktive Aktorschicht auf faseroptischen Sensoren N2 - Durch den Einsatz von eingebetteten faseroptischen Sensoren können Bauteile überwacht und frühzeitig Informationen über Materialveränderungen gewonnen werden. Um die Zuverlässigkeit eines solchen Sensors gewährleisten zu können, ist es wichtig, die korrekte Funktion des Sensors im Verbund mit einer Werkstoff-Matrix on-line und in-situ überwachen zu können. Im Rahmen des DFG-Projekts FAMOS² (FAser-basierter Magneto-Optischer SchichtSensor) wurde ein selbstdiagnose-fähiger Schichtsensor entwickelt, welcher mit Hilfe einer magnetostriktiven Aktorschicht validiert werden kann. Durch eine Kombination aus PVD (physical vapour deposition) und ECD (electro-chemical deposition) wird die Aktorschicht auf faseroptischen Sensoren haftfest abgeschieden. Ein äußeres Magnetfeldes dehnt die Aktorschicht und damit auch die Faser reversibel. Diese Dehnung führt zu einer Verschiebung der Bragg-Wellenlänge, welche direkt mit der Stärke des zu messenden Magnetfeldes korreliert. Ein etwa 100 Nanometer dünnes PVD-Schichtsystem aus Chrom und Kupfer dient zunächst als Haftvermittler zwischen Glasfaser und ECD-Schicht. Um eine rotationssymmetrische Schichtabscheidung zu erhalten, erfolgt während der PVD-Beschichtung eine Rotation der Faser. In einem klassischen Watts-Elektrolyten wird dann im zweiten Schritt die eigentliche etwa 30 Mikrometer dicke ECD-Aktorschicht auf die PVD-Schicht abgeschieden. Reine Ni-Schichten werden mit NiFe-Legierungen verglichen. Die Geometrie der Faser stellt für die Herstellung und Charakterisierung der Schichten auf der einen Seite eine besondere Herausforderung dar, bietet aber zugleich auch neue experimentelle Möglichkeiten. So kann ggf. die Entstehung von Spannungen in der Schicht während der ECD-Abscheidung in-situ verfolgt werden, indem die Wellenlängenverschiebung aufgrund der Dehnung des Bragg-Gitters optisch gemessen wird. Die Anpassung der Beschichtungsverfahren an die Fasergeometrie sowie die Charakterisierung und die Eigenschaften der ECD-Schicht werden diskutiert. Insbesondere wird auf den Elastizitätsmodul der Aktorschicht eingegangen, wobei Werte aus der Nanoindentation und dem 2-Punkt-Biegeversuch mit der beschichteten Faser als Biegebalken verglichen werden. T2 - ZVO-Oberflächentage CY - Garmisch-Partenkirchen, Germany DA - 21.09.2016 KW - Selbstdiagnosefähiger FBG-Sensor KW - ECD/PVD-Kombinations-Schichtsystem KW - Magnetostriktive Ni- und NiFe-Schicht KW - Nanoindentation KW - 2-Punkt-Biegeversuch PY - 2016 AN - OPUS4-37505 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -