TY - JOUR A1 - Hönig, Gerald A1 - Westerkamp, S. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Shielding electrostatic fields in polar semiconductor nanostructures N2 - Polar semiconductor materials enable a variety of classic and quantum-light sources, which are optimized continuously. However, one key problem—the inherent electric crystal polarization of such materials—remains unsolved and deteriorates the radiative exciton decay rate. We suggest a sequence of reverse interfaces to compensate these polarization effects, while the polar, natural crystal growth direction is maintained. Former research approaches, like growth on less-polar crystal planes or even the stabilization of unnatural phases, never reached industrial maturity. In contrast, our concept provides a way for the development of ultrafast devices based on established growth processes for polar materials, while the electric potential landscape becomes adjustable. KW - Piezopolarisation KW - Spontane Polarisation KW - Halbleiterphysik KW - Nanophysik KW - Optoelektronik PY - 2017 U6 - https://doi.org/10.1103/PhysRevApplied.7.024004 SN - 2331-7019 VL - 7 IS - 2 SP - 024004-1 EP - 024004-12 PB - American Physical Society CY - College Park, MD 20740-3844 AN - OPUS4-39125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlichting, S. A1 - Hönig, Gerald A1 - Müßener, J. A1 - Hille, P. A1 - Grieb, T. A1 - Westerkamp, S. A1 - Teubert, J. A1 - Schörmann, J. A1 - Wagner, M.R. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Suppression of the quantum-confined Stark effect in polar nitride heterostructures N2 - Recently, we suggested an unconventional approach (the so-called Internal-Field-Guarded-Active-Region Design “IFGARD”) for the elimination of the quantum-confined Stark effect in polar semiconductor heterostructures. The IFGARD-based suppression of the Stark redshift on the order of electronvolt and spatial charge carrier separation is independent of the specific polar semiconductor material or the related growth procedures. In this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the quantum-confined Stark effect in strongly polar [000-1] wurtzite GaN/AlN nanodiscs as evidenced by a reduction of the exciton lifetimes by up to four orders of magnitude. Furthermore, the tapered geometry of the utilized nanowires (which embed the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement and Stark emission energy shifts. Due to the IFGARD, both effects become independently adaptable. KW - Nanophotonics KW - Photonic devices KW - Single photon and quantum effects PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457884 UR - https://www.nature.com/articles/s42005-018-0044-1.epdf?author_access_token=TY108APMwI3Sy8_rbgAfMdRgN0jAjWel9jnR3ZoTv0Nca8yl_PwcuYy5S8D5-135dHiIk0H3cLNs57LA06d05O3lzyobDE7c_u32aHX8LlqxgvsOeicEftHVuupGzE3laWz-YTIw9mi-TlS8nsUOFQ%3D%3D SN - 2399-3650 VL - 1 SP - 48, 1 EP - 8 PB - Springer Nature AN - OPUS4-45788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -