TY - JOUR A1 - Fettig, Ina A1 - Krüger, Simone A1 - Deubel, Jan A1 - Werrel, Martin A1 - Raspe, Tina A1 - Piechotta, Christian T1 - Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris JF - Journal of forensic sciences N2 - The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions—extraction temperature, incubation and exposure time—were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris. KW - Forensic science KW - Arson analysis KW - Fire debris KW - Ignitable liquids KW - Solid-phase microextraction KW - Smoke density chamber KW - Cone calorimeter PY - 2013 UR - http://onlinelibrary.wiley.com/doi/10.1111/1556-4029.12342/full DO - https://doi.org/10.1111/1556-4029.12342 SN - 0022-1198 SN - 1556-4029 VL - 59 IS - 3 SP - 743 EP - 749 PB - Wiley CY - Hoboken, NJ, USA AN - OPUS4-30038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, Y.S. A1 - Li, Y.-C. A1 - Pitts, W.M. A1 - Werrel, Martin A1 - Davis, R.D. T1 - Rapid growing clay coatings to reduce the fire threat of furniture JF - ACS applied materials & interfaces N2 - Layer-by-layer (LbL) assembly coatings reduce the flammability of textiles and polyurethane foam but require extensive repetitive processing steps to produce the desired coating thickness and nanoparticle fire retardant content that translates into a fire retardant coating. Reported here is a new hybrid bi-layer (BL) approach to fabricate fire retardant coatings on polyurethane foam. Utilizing hydrogen bonding and electrostatic attraction along with the pH adjustment, a fast growing coating with significant fire retardant clay content was achieved. This hybrid BL coating exhibits significant fire performance improvement in both bench scale and real scale tests. Cone calorimetry bench scale tests show a 42% and 71% reduction in peak and average heat release rates, respectively. Real scale furniture mockups constructed using the hybrid LbL coating reduced the peak and average heat release rates by 53% and 63%, respectively. This is the first time that the fire safety in a real scale test has been reported for any LbL technology. This hybrid LbL coating is the fastest approach to develop an effective fire retardant coating for polyurethane foam. KW - Layer-by-layer assembly KW - Polyurethane foam KW - Sodium montmorillonite KW - Flame retardant KW - Real scale mockup PY - 2014 DO - https://doi.org/10.1021/am405259n SN - 1944-8244 SN - 0013-936X SN - 1944-8252 VL - 6 IS - 3 SP - 2146 EP - 2152 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-31489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werrel, Martin A1 - Deubel, Jan A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Krause, U. T1 - The calculation of the heat release rate by oxygen consumption in a controlled-atmosphere cone calorimeter JF - Fire and materials N2 - The standard cone calorimeter according to ASTM E 1354 and ISO 5660 enables reaction-to-fire tests to be performed in ambient atmospheric conditions. A controlled-atmosphere chamber modifies the standard apparatus in a way that allows tests to be performed in nonambient conditions as well. The enclosed chamber is placed underneath the standard exhaust hood and does not have a closed connection to the hood. With this open arrangement, the exhaust gases are diluted by excess air drawn in from the laboratory surroundings. Heat-induced changes in the consequential dilution ratio affect the calculation of fire quantities and, when neglected, lead to deviations of up to 30% in heat release rate. The paper introduces a test protocol and equations to calculate the heat release rate taking dilution effects into account. A mathematical correction is shown that compensates for the dilution effects while avoiding extensive mechanical changes in the equipment. KW - Controlled-atmosphere cone calorimeter KW - Heat release rate KW - Oxygen consumption KW - Cone calorimeter KW - Vitiation and ventilation control KW - Excess air PY - 2014 DO - https://doi.org/10.1002/fam.2175 SN - 0308-0501 SN - 1099-1018 VL - 38 IS - 2 SP - 204 EP - 226 PB - Heyden CY - London AN - OPUS4-30317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Deubel, Jan A1 - Werrel, Martin A1 - Fettig, Ina A1 - Raspe, Tina T1 - Experimental studies on the effect of fire accelerants during living room fires and detection of ignitable liquids in fire debris JF - Fire and materials N2 - Reconstructing the course of a fire and performing chemical analysis of ignitable liquids in fire debris is an important tool to conduct fire investigations in suspected arson cases. Here, a total of five fire tests has been performed to investigate the effect of fire accelerants on the fire development of a room fire and to prove the capability of analytical methods. Different experimental scenarios have been realized (no accelerant, accelerant applied at different positions, and different amounts of fire accelerant). Each test room was equipped with an identical set of living room furnishing. The location and amount of the fire accelerant applied löschen varied in four of five tests. One experiment was carried out without fire accelerant. Fire quantities such as mass loss (of the entire room), gas temperatures (at several locations in the room), and heat release were determined during the experiments, and chemical-analytical studies were carried out. A headspace solid phase micro extraction procedure, using gas chromatography–mass spectrometry, was used to analyze fire debris samples to potentially detect ignitable liquids. Beside the analysis of fire debris samples, swipe soot samples were analyzed and the detectability of the fire accelerant used was demonstrated. Results show that it is possible to provide evidence of ignitable liquids in soot samples collected from walls. This allows an additional sampling strategy at potential crime scenes, besides taking fire debris samples. KW - Fire behavior KW - Room fire test KW - Heat release KW - Temperatures KW - Fire debris KW - Ignitable liquids KW - Solid phase microextraction KW - Gas chromatography PY - 2015 DO - https://doi.org/10.1002/fam.2263 SN - 0308-0501 SN - 1099-1018 VL - 39 IS - 7 SP - 636 EP - 646 PB - Heyden CY - London AN - OPUS4-34550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -