TY - CONF A1 - Weltschev, Margit A1 - Sturm, Christine T1 - Correlation between material parameters of high density polyethylene grades and the test performance behaviour of packagings T2 - EUROCORR 2008 - Managing corrosion for sustainability T2 - EUROCORR 2008 CY - Edinburgh, Scotland, UK DA - 2008-09-07 KW - Dangerous goods packagings KW - HDPE grades KW - Material parameters KW - Design type tests PY - 2008 N1 - Serientitel: EFC-Event – Series title: EFC-Event IS - 299 SP - 1 EP - 12 PB - DECHEMA CY - Frankfurt am Main AN - OPUS4-17993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit T1 - Correlation between material parameters of high density polyethylene grades and the test performance behavior of packagings T2 - NACE International corrosion conference 2009 (Proceedings) T2 - NACE International corrosion conference 2009 CY - Atlanta, Georgia, USA DA - 2009-03-22 KW - Dangerous goods packagings KW - HDPE grades KW - Material parameters KW - Design type tests PY - 2009 SP - 1 EP - 13 (Paper 09328) AN - OPUS4-19257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Jochems, Frank T1 - Compatibility of sealing materials with biofuels, biodiesel-heating oil blends and premium grade fuel at different temperatures T2 - EUROCORR 2014 - European corrosion congress N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester) represent an important renewable fuel alternative to petroleum-derived transport fuels. Increasing biofuel use would bring some benefits, such as a reduction in oil demands and greenhouse gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The question arises of whether sealing materials are resistant to fuels with bioethanol and biodiesel (rapeseed oil fatty acid methyl ester). The aim of this work is to study the interaction between sealing materials such as FKM (fluorocarbon rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), NBR (acrylonitrile-butadiene rubber), IIR (butyl rubber), VMQ (methyl-vinyl-silicone rubber), FVMQ (methyl-fluoro-silicone rubber) and PA (polyamide) and biofuels such as biodiesel (FAME, non-aged and 2 years aged), E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel, non-aged and one year aged) compared with premium-grade fuel at 20°C, 40°C and 70°C for 84 days. Exposure experiments were conducted with specimens of these elastomers to document the changes in the mass and tensile properties of these sealing materials. Visual examination of some test specimens clearly showed a great volume increase until breakage or partial dissolution. The sealing materials FVMQ, VMQ and PA were evaluated as resistant in E85 at 20°C and 40°C with a reduction of tensile properties limited to 15%. None of the examined materials was evaluated as resistant at 70°C with even fluorocarbon rubber losing 20% of its tensile strength in E85. When exposed to biodiesel, elastomers were affected in two ways: firstly, by absorption of liquid by the elastomers and, secondly, by dissolution of soluble components from the elastomers into the liquid medium. Swelling was the result of the high absorption by the elastomers CR, CSM, EPDM, IIR and NBR in comparison to their dis-solution in non-aged and two years aged biodiesel. FKM, VMQ and PA were evaluated as resistant sealing materials in non-aged biodiesel at 40°C. FKM was still resistant in aged biodiesel at 40°C but only to a limited degree at 70°C. The sealing materials CR, CSM, EPDM, IIR, NBR and VMQ were damaged to a high extent in non-aged and one year aged B10 as a result of swelling up to 70°C. FVMQ and PA can be evaluated as resistant in non-aged and one year aged B10 at 20°C and 40°C. However, FKM was evaluated as resistant up to 70°C. The exposure tests showed that all the elastomers tested were resistant in the premium-grade fuel Super at 20°C. On increasing the temperature to 40°C, only FKM, VMQ and PA were resistant to Super. At 70°C FKM showed the best resistance. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Compatibility KW - Sealing materials KW - Biofuels KW - Mass loss KW - Change in tensile properties PY - 2014 SN - 978-3-89746-159-8 SP - 1 EP - 13 AN - OPUS4-31427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Heming, Frank A1 - Jochems, Frank A1 - Werner, Jan T1 - Compatibility of sealing materials with biofuels, biodiesel-heating oil blends and premium grade fuel at different temperatures T2 - EUROCORR 2014 T2 - EUROCORR 2014 CY - Pisa, Italy DA - 2014-09-08 PY - 2014 AN - OPUS4-31418 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of sealing materials with biofuels, biodiesel heating oil blends and premium grade fuel at different temperatures T2 - Frontiers in polymer science T2 - Frontiers in polymer science CY - Riva del Garda, Italien DA - 2015-05-20 PY - 2015 AN - OPUS4-33314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Heming, Frank A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of sealing materials with biofuels and biodiesel-heating oil blends T2 - CORROSION 2015 T2 - CORROSION 2015 CY - Dallas, USA DA - 2015-03-15 PY - 2015 AN - OPUS4-32909 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Heming, Frank A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of sealing materials with biofuels and biodiesel-heating oil blends T2 - Corrosion 2015 N2 - Changes in fuel composition and the introduction of alternative fuels often create problems of degradation in materials. The objective of this research is to study the interaction of the sealing materials FKM, EPDM, CR, CSM, N8R, IIR, VMQ, FVMQ and PA and biofuels such as non-aged and 2 year aged biodiesel (FAME), E1 0 (fuel with 10% ethanol, E85 (fuel with 85% ethanol} and non-aged and 1 year aged 810 (heating oil with 10% biodiesel) in comparison with premium grade fuel without ethanol. Exposure tests were performed with test specimens at 20 °C, 40 oc and 70 oc for 84 days to document the changes in mass, volume and tensile properties. The sealing materials FKM, FVMQ and PA were evaluated as resistant in E10, and FVMQ, VMQ and PA as resistant in E85 at 20 oc and 40 oc. S welling resulted from the high absorption by the elastemers CR, CSM, EPDM, IIR and N8R in comparison to their dissolution in non-aged biodiesei at 40 °C. FKM was still resistant in aged biodiesei at 40 oc but only to a limited degree at 70 °C. The sealing materials CR, CSM, EPDM, IIR and N8R were damaged to a high extent in non-aged and aged 810. Of all the sealing materials, FKM and FVMQ showed high compatibility with these biofuels up to 70 °C. T2 - Corrosion 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Biofuels KW - Sealing materials KW - Compatibility KW - Change in tensile properties KW - Change in mass PY - 2015 SP - Paper No. 5535, 1 EP - 13 AN - OPUS4-32969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit T1 - Compatibility of sealing materials with biofuels and biodiesel heating oil blends at different temperatures JF - International Journal of Earth & Environmental Science N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester, FAME) represent an important renewable fuel alternative to petroleum-derived transport fuels. Increasing biofuels use would bring some benefits, such as a reduction in oil demands and greenhouse gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The objective of this research was to determine the resistance of frequently used sealing materials such as CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), EPDM (ethylene-propylene-diene rubber), FKM (fluorocarbon rubber), FVMQ (methyl-fluorosilicone rubber), IIR (butyl rubber), NBR (acrylonitrile-butadiene rubber), PA (polyamides), PUR (polyester urethane rubber) and VMQ (methyl-vinyl-silicone rubber), in heating oil with admixtures of biogenic sources such as E10 (fuel with max. 10 % ethanol), E85 (fuel with 85 % ethanol), non-aged and aged biodiesel, diesel fuel with 5 % biodiesel, non-aged and aged B10 (heating oil with 10 % biodiesel) at 20 °C, 40 °C and 70 °C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the fuels. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was set for the evaluation of the compatibility. The sealing materials CR, CSM, EPDM, IIR and NBR were generally not resistant to biodiesel and B10. In summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. KW - Compatibility evaluation KW - Polymers KW - FAME KW - Heating oil with 10 % FAME PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479722 DO - https://doi.org/10.15344/2456-351X/2019/165 SN - 2456-351X VL - 4 IS - 165 SP - 4 EP - 9 PB - Graphyonline Publications Pvt. Ltd. CY - Bangalore, Karnataka, Indien AN - OPUS4-47972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit T1 - Compatibility of sealing materials with biofuels and biodiesel heating oil blends at different temperatures N2 - The objective of this research was to determine the resistance of frequently used sealing materials such as FKM (fluorocarbon rubber), FVMQ (methyl-fluoro-silicone rubber), VMQ (methyl-vinyl-silicone rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), IIR (butyl rubber), PA (polyamides), NBR (acrylonitrile-butadiene rubber) and PUR (polyester urethane rubber) in fuels and heating oil with admixtures of biogenic sources such as E10 (fuel with 10 % ethanol), E85 (fuel with 85 % ethanol), non-aged and aged biodiesel, diesel fuel with 5 % biodiesel, non-aged and aged B10 (heating oil with 10 % biodiesel) at 20 °C, 40 °C and 70 °C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the fuels. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore a threshold of 15 % was determined for the evaluation of the compatibility. In summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. T2 - 13th International Congress on Biofuels & Bioenergy CY - Ottawa, Canada DA - 18.10.2018 KW - Sealing materials KW - Biodiesel KW - Diesel fuel KW - Heating oil with 10 % biodiesel KW - Tensile properties KW - Shore hardness KW - Fuel with 10 % ethanol PY - 2018 AN - OPUS4-46358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Haufe, Manuela T1 - Compatibility of sealing materials with biodiesel, bioethanol-gasoline and biodiesel-heating oil blends T2 - EUROCORR 2013 - The European corrosion congress (Proceedings) N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester) represent an impor-tant renewable fuel alternative to petroleum-derived transport fuels. Increasing bio-fuel use would bring some benefits, such as a reduction in oil demands and green-house gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The aim of this work is to study the interaction between sealing materials such as FKM (fluorocarbon rubber), EPDM (ethylene-propylene-diene rubber), CR (chloro-prene rubber), CSM (chlorosulfonated polyethylene), NBR (acrylonitrile-butadiene rubber), IIR (butyl rubber), VMQ (methyl-vinyl-silicone rubber) and FVMQ (methyl-fluoro-silicone rubber) and biofuels such as biodiesel, E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel) at 70°C for 84 days. Experiments were con-ducted with tests specimens of theses elastomers to document the changes in the mass and tensile properties of these sealing materials according to ISO 1817. The exposure tests of the elastomers in E85 at 70°C showed that the weight gain caused by swelling of the test specimens was in the range of 3% to 12%. However, the weight gain of the fluorinated elastomers was at the lower end of this range. Tensile strength and breaking elongation decreased by 22% to 61% or 13% to 77%. The lowest decrease in the tensile properties was determined for FKM, EPDM und IIR. These sealing materials were evaluated as resistant to E85 up to a temperature of 70°C. Biodiesel absorbed water more quickly and aged faster than conventional diesel fuel. The weight loss of the elastomers varied between 9% (FKM) and 126% (CSM) in biodiesel. FKM was evaluated as resistant with a 16% reduction in tensile strength, a 2% reduction in breaking elongation and low weight loss. NBR, EPDM, CSM and VMQ were evaluated as not resistant. CSM even lost 84% of its original tensile strength and 78% of its breaking elongation. The highest weight gain as a result of swelling was measured for CSM with 86%, for EPDM with 84% and for VMQ with 54% in B10, while the fluorine-containing elasto-mers FKM (1%) and FVMQ (3%) absorbed much less B10 and swelled less. FKM lost 23% in tensile strength and 17% in breaking elongation; FMVQ lost 29% in ten-sile strength and 36% in breaking elongation. FMVQ was, therefore, only limited in its resistance to B10. The elastomers NBR, EPDM, CSM and VMQ were not resistant to B10 at all as the decrease in the tensile properties was significantly over 50%. NBR lost about 93% and CSM about 100% of its breaking elongation. The conclusion of the investigations at 70°C is that FKM is the most resistant sealing material in biodiesel, E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel). T2 - EUROCORR 2013 - The European corrosion congress CY - Estoril, Portugal DA - 01.09.2013 KW - Compatibility KW - Sealing materials KW - Biodiesel KW - E85 KW - B10 KW - Mass loss KW - Tensile properties PY - 2013 SN - 978-989-8601-31-5 SP - 1 EP - 6 AN - OPUS4-29150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Haufe, Manuela T1 - Compatibility of sealing materials with biodiesel, bioethanol-gasoline and biodiesel-heating oil blends T2 - European Corrsosion Congress 2013 T2 - European Corrsosion Congress 2013 CY - Estoril, Portugal DA - 2013-09-01 PY - 2013 AN - OPUS4-29131 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Bäßler, Ralph T1 - Compatibility of polymers with heating oil with 20 % biodiesel at different temperatures under static and compressed conditions N2 - Biodiesel is viewed as a major source of energy. In areas such as the European Union, where 80 % of the oil-based fuel is imported, there is also the desire to reduce dependence on external oil supplies. Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with 20 % biodiesel (B20) in comparison to pure heating oil. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties. Extraction alters the fuel chemistry. These chemical changes could also accelerate the degradation (hydrolysis and oxidation) of the polymeric material with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used materials for components in middle distillate facilities such as ACM, FKM, HNBR, PA, PE, POM, PUR and PVC in heating oil and heating oil blend B20 for 84 days at 40 °C, and FKM, HNBR, PA, POM, PUR and PVC at 70 °C. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after exposure for 84 (42) days in the test fuels under static conditions. For the investigations under compressed conditions, the mass and the compression set of FKM test specimens were determined before and after exposure for 3, 7, 14, 28, 56 and 90 days in B20 at 40 °C and 70 °C according to ISO 815-1 “Rubber, vul-canized or thermoplastic - determination of compression set – Part 1: At ambient or elevated temperatures”. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was determined for the evaluation of the compatibility. The change of tensile strength and breaking elongation of test specimens made of ACM, FKM, HNBR, PA, PE, POM, PUR and PVC exposed to heating oil and the blend B20 was less than 15 % at 40 °C. A maximum reduction in Shore hardness A of 14 % was determined for ACM at 40 °C and for HNBR of 15 % at 70 °C. It can be concluded that ACM, FKM, HNBR, PA, PE, POM, PVC and PUR were resistant in B20 at 40°C. FKM, PA, POM and PVC were evaluated as resistant in heat-ing oil and B20 at 70 °C, HNBR and PUR were not resistant in these fuels at 70°C. Based on the mass increase and compression set values of FKM test specimens it can be stated that FKM is resistant in B20 under compressed conditions at 40 °C and 70 °C. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil - biodiesel - blend KW - Polymeric materials KW - Compatibility KW - Tensile properties KW - Shore Hardness PY - 2019 AN - OPUS4-49002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, S. A1 - Bäßler, Ralph T1 - Compatibility of polymers with aged heating oil containing 10 % and 20 % biodiesel under static conditions N2 - Biodiesel is viewed as a major source of energy. In areas such as the European Un-ion, where 80 % of the oil-based fuel is imported, there is also the desire to reduce dependence on external oil supplies. Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with 20 % biodiesel (B20) in comparison to pure heating oil. The polarity of biodiesel increases its solvency and facilitates permeation and extrac-tion. Solvation, swelling and/or extraction lead to changes in the physical properties. Extraction alters the fuel chemistry. These chemical changes could also accelerate the degradation (hydrolysis and oxidation) of the polymeric material with the loss of additives and stabilizers. Exposure tests to determine the resistance of polymers frequently used for compo-nents in middle distillate facilities, such as ACM, FKM, HNBR, PA, PE, POM, PUR and PVC in heating oil and a blend of heating oil and 20 % biodiesel (B20) were al-ready performed. The objective of this research was to determine the resistance of these polymers in 8-year aged heating oil blend B10 and 1-year aged blend B20 at 40 °C. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after exposure for 84 (42) days in the test fuels under static conditions. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was deter-mined for the evaluation of the compatibility. A significant reduction in Shore hardness was determined after exposure of ACM and PUR test specimens in 1-year aged B20. The tensile strength of PUR test specimens in 1-year aged B20 was reduced by more than 50 %, and the breaking elongation by more than 30 %. A decrease in breaking elongation was measured for POM test specimens after ex-posure to 1-year aged B20 by 25 % (limited resistance). 8-year aged B10 had a stronger effect than 1-year aged B20 on the polymers. ACM test specimens were softened by B10 resulting in a drop of Shore hardness by over 20 %. B10 reduced tensile strength and breaking elongation of PUR test specimens by over 50 %. In contrast, the breaking elongation of POM was increased by over 270 %. It can be concluded that the polymers HNBR, FKM, PA6, PE and PVC are resistant in 1-year aged B20 whereas ACM and POM are limited resistant. PUR is not re-sistant. HNBR, FKM, PA6, PE and PVC are resistant in 8-year aged B10, whereas PUR and POM are not resistant, and ACM just limited resistant. T2 - EUROCORR 2020 CY - Online meeting DA - 07.09.2020 KW - Aged heating oil with 10% and 20% biodiesel KW - Resistance of polymers KW - Tensile properties KW - Shore hardness PY - 2020 AN - OPUS4-51240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pötzsch, Sina A1 - Weltschev, Margit A1 - Bäßler, Ralph T1 - Compatibility of polymers exposed to heating oil blends with 10 % and 20 % biodiesel (FAME) T2 - Proceedings Annual AMPP International Corrosion Conference 2021 N2 - Biodiesel (FAME) from rapeseed is an environmentally friendly alternative to common fossil fuels. It is also suitable to serve as blending component to fuels like heating oil. If the fuel composition is changed, materials compatibility must be guaranteed. Adding polar biodiesel to nonpolar heating oil, changes the blend’s solvency and might cause swelling, extraction and solvation of polymers. The objective of this research was to investigate the compatibility of polymeric materials, which are commonly used for components in middle distillate facilities, along with blends of heating oil and 20 % biodiesel (B20). For this propose, ACM, HNBR, FKM, PE, PA 6, POM, PUR and PVC were exposed to heating oil and B20 for 42 and 84 days at 40 °C. In addition, the polymers HNBR, FKM, PA, POM and PVC were also exposed at 70 °C. Furthermore, the resistance of polymers in eight-year aged B10 at 40 °C was evaluated. Ageing of biodiesel increases acidity which might propagate polymer corrosion. The materials were evaluated as resistant, if the loss in tensile properties (tensile strength and elongation at break) and Shore hardness remained under 15 % compared to the initial unexposed material values. For investigations under compressed conditions, the compression set was determined for specimens of ACM, FKM and HNBR after exposure in heating oil B0 and B20 for 3,7,14, 28, 56 and 90 days at 40 °C according to ISO 815-1. It was found that the resistance in B20 at 40 °C was given for all tested polymers except PUR. In the 8 years aged B10, PUR and POM were not compatible and ACM just conditionally compatible. At 70 °C, FKM and PVC were resistant in B20, whereas HNBR and PA 6 were not compatible. Swelling occurred for the elastomers ACM, HNBR and PUR. T2 - AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 19.04.2021 KW - Biodiesel KW - FAME KW - RME KW - Polymer in fuels PY - 2021 SP - 16222-01 EP - 16222-12 CY - Houston AN - OPUS4-52499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina T1 - Compatibility of polymeric sealing materials with biodiesel heating oil blends at different temperatures N2 - Biodiesel is subject to degradation processes like oil and grease. The oxidative degradation products of vegetable oil esters in biodiesel particularly lead to enhanced sedimentation in blended fuels. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. It also accelerates the degradation (hydrolysis and oxidation) of these materials with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used polymeric materials such as ACM, EPDM, FKM, FVMQ, CR, CSM, IIR, HNBR, NBR, PA, PE; POM, PUR, PVC and VMQ in biodiesel and heating oil with 10 %/20 % biodiesel (B10/B20) at 40°C and 70°C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the biodiesel heating oil blends. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D were determined before and after exposure of the test specimens in the biofuels for 42 days. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to biodiesel and B10 at 40°C and 70°C. FKM, ACM, HNBR, PA, PE, POM, and PVC showed high compatibility in B10/B20 at 40°C. A lower compatibility was determined for ACM in biodiesel. ACM and HNBR were not resistant in B20 at 70°C. T2 - Biofuels & Bioenergy CY - Rome, Italy DA - 14.10.2019 KW - Heating oil-Biodiesel-Blend KW - Compatibility evaluations KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-49306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Rehfeldt, Rainer T1 - Compatibility of polymeric materials with heating oil/biodiesel blends at different temperatures N2 - Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with admixtures of 10 % biodiesel (B10) and 20 % biodiesel (B20). The polarity of biodiesel increases its solvency and facilitates permeation and extrac-tion. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. The objective of this research was to determine the resistance of frequently used sealing materials such as FKM, EPDM, CR, CSM, NBR, IIR, VMQ, FVMQ, PA and PUR in up to four-year aged B10 for 84 days at 20 °C, 40 °C and 70 °C. The polymeric materials: ACM, FKM, HNBR, PA, PE; POM, PUR and PVC were ex-posed to B20 for 84 days at 40°C and 70°C in another research project. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after the exposure for 84 (42) days in the heating oil blends B10 and B20. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was deter-mined for the evaluation of the compatibility. Measurements of the variations in mass, tensile properties and Shore hardness after exposure of the polymers in non-aged and aged heating oil B10 showed clearly that FKM, FVMQ and PA were the most resistant materials in B10. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to B10. Damage to the materials increased with higher test temperatures and the age of B10. FKM, POM and PVC showed high compatibility in B20 at 40°C and 70 °C. ACM, HNBR and PA were evaluated as resistant in B20 at 40 °C but not at 70°C. T2 - Corrosion 2019 CY - Warsaw, Poland DA - 27.09.2019 KW - Polymers KW - Compatibility evaluations KW - Heating oil with 10% biodiesel KW - Heating oil with 20% biodiesel KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-48146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela T1 - Compatibility of polyethylene grades with biofuels and biodiesel-heating oil blends T2 - EUROCORR 2015 - European corrosion congress (Proceedings) N2 - 8iofuels including ethanol and biodiesel (fatty acid methyl ester) represent an important renewable fuel alternative to petroleum-derived transport fuels. lncreasing biofuels use would bring some benefits, such as a reduction in oil demands and greenhause gas emissions, and an improvement in air quality. T2 - EUROCORR 2015 - European corrosion congress CY - Graz, Austria DA - 06.09.2015 KW - Compatibility KW - Polyethylene grades KW - Biofuels KW - Change in MFR and tensile properties PY - 2015 SP - Paper 16_1074, 1 EP - 11 AN - OPUS4-34203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of polyethylene grades with biofuels and biodiesel-heating oil blends T2 - CORROSION 2015 T2 - CORROSION 2015 CY - Dallas, USA DA - 2015-03-15 PY - 2015 AN - OPUS4-32908 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of polyehtylene grades with biofuels and biodiesel-heating oil blends T2 - Corrosion 2015 N2 - The aim of this work was to study the interaction between high density polyethylene (HDPE) grades as material for dangeraus goods packagings and biofuels such as E10 (fuel with 10% ethanol), E85 (fuel with 85% ethanol), biodiesei and 810 (heating oil with 10% biodiesel). Jerricans made of two polyethylene grades were filled with these fuels and exposed to temperatures of 20 oc and 40 oc for more than one year. Tensile properlies (tensile strength, breaking elongation and elasticity modulus) and Melt Flow Rate (MFR) were determined, and Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate changes in the chemical structure. Measurements of the MFR and tensile properlies of the polyethylene grades after exposure to E1 0, E85 and 810 showed only a slightly damaging influence. A n increase in the peak of 1585 cm·1 for the (C=C) stretching vibrations was visible in the FTIR spectra after immersion tests with E85. A n increase in the MFR with the immersion time of the grades in biodiesei was measured - in parlicular, after one year of exposure. The elasticity modulus of the polyethylene grades was reduced with the immersion time too. The FTIR spectra showed a broadening of the C=O peak of 1740 cm·1 and the appearance of the hydroxyl group at 3500 cm·1. T2 - Corrosion 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Polyethylene grades KW - Biodiesel KW - E10 KW - E85 KW - B10 KW - Tensile properties KW - FTIR analysis KW - Compatibility KW - Biofuels KW - Change in MFR and tensile properties PY - 2015 SP - Paper No. 5536, 1 EP - 12 AN - OPUS4-32968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Bäßler, Ralph T1 - Compatibility of metallic tank and polymeric sealing materials with biofuels T2 - ACHEMA T2 - ACHEMA CY - Frankfurt am Main DA - 2015-06-15 PY - 2015 AN - OPUS4-33534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit A1 - Werner, Jan A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of high-density polyethylene grades with biofuels JF - Packaging technology & science N2 - The aim of this work was to study the interaction between high-density polyethylene (HDPE) grades as material for dangerous goods packagings and biofuels such as E85 and biodiesel. Jerricans made of two polyethylene (PE) grades were filled with these fuels and exposed to temperatures of 20°C and 40°C for 1 year. Tensile properties (tensile strength, breaking elongation and elasticity modulus) and melt flow rate (MFR) were determined once a month, and Fourier transform infrared (FTIR) spectroscopy was used to evaluate changes in the chemical structure. Measurements of the MFR and tensile properties of the PE grades after 1 year of exposure to E85 showed only a slightly damaging influence. An increase in the peak of 1585 cm-1 (C=C) stretching vibrations is visible in the FTIR spectra after the immersion tests with E85. Therefore, packagings made of HDPE grades are suitable for the transport of E85. An increase in the MFR with immersion time of the grades in biodiesel was measured, in particular, after 1 year of exposure. The elasticity modulus of the PE grades was reduced with immersion time. The FTIR spectra showed a broadening of the CO peak of 1740 cm-1 and the appearance of the hydroxyl group at 3500 cm-1. Both results are explained by secondary degradation products of the PE decomposition process caused by increasing unsaturated fatty acid content in the biodiesel. In light of the above mentioned, it was concluded that HDPE grades are not suitable as packaging materials for the transport of biodiesel. T2 - IAPRI 2013 - 26th Symposium on packaging CY - Espoo, Finland DA - 10.06.2013 KW - Polyethylene grades KW - Biodiesel KW - E85 KW - Tensile properties KW - FTIR analysis PY - 2013 DO - https://doi.org/10.1002/pts.2028 SN - 0894-3214 VL - 27 SP - 231 EP - 240 PB - Wiley CY - Chichester, UK AN - OPUS4-28696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of High Density Polyethylene Grades with Biofuels T2 - 26th IAPRI Symposium on Packaging 2013 T2 - 26th IAPRI Symposium on Packaging 2013 CY - Espoo, Finland DA - 2013-06-10 PY - 2013 AN - OPUS4-28665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Brandt, S. T1 - Compatibility of high density polyethylene grades with bioethanol-gasoline blends and biodiesel T2 - EUROCORR 2012 - The European corrosion congress T2 - EUROCORR 2012 - The European corrosion congress CY - Istanbul, Turkey DA - 2012-09-09 PY - 2012 SP - 1 EP - 12(?) AN - OPUS4-26534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Brandt, S. T1 - Compatibility of high density polyethylene grades with bioehanol-gasoline blends and biodiesel T2 - EUROCORR T2 - EUROCORR CY - Istanbul, Turkey DA - 2012-09-09 PY - 2012 AN - OPUS4-26683 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank T1 - Compatibility of Elastomers with Biofuels T2 - CORROSION 2014 T2 - CORROSION 2014 CY - San Antonio, TX, USA DA - 2014-03-09 PY - 2014 AN - OPUS4-30430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank T1 - Compatibility of elastomers with biofuels T2 - Corrosion 2014 N2 - Biofuels represent an important renewable fuel alternative to petroleum-derived transport fuels. Materials compatibility is a major concern whenever the fuel composition is changed. The aim of this work is to study the interaction of the elastomers: FKM, EPDM, CR, CSM, NBR, IIR, VMQ and FVMQ and biofuels such as biodiesel (FAME), E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel). Exposure tests were performed with test specimens at 40°C (104°F) and 70°C (158°F) for 84 days to document the changes in mass, volume and tensile properties according to ISO 1817. The exposure tests in E85 showed that the weight gain caused by swelling was in the range up to 12%. The lowest decrease in the tensile properties was determined for FKM, VMQ and IIR. The weight gain of the elastomers in biodiesel varied between 10% (FKM) and 126% (CSM) and the loss of tensile strength between 16% (FKM) and 100% (CSM) at 70°C (158°F). FKM and FVMQ absorbed much less B10 and swelled less. NBR, EPDM, CR, CSM, IIR and VMQ were not resistant to B10 at all as the decrease in the tensile properties was significantly over 50%. Among all of the elastomers FKM showed high compatibility with these biofuels up to 70°C (158°F). T2 - Corrosion 2014 CY - San Antonio, TX, USA DA - 09.03.2014 KW - Biofuels KW - Elastomers KW - Compatibility KW - Change in tensile properties KW - Change in mass KW - Sealing materials KW - Biodiesel KW - E85 KW - B10 KW - Mass loss KW - Tensile properties PY - 2014 SP - Paper 3745, 1 EP - 9 AN - OPUS4-30411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility Evaluations of Sealing Materials with Aged Biofuels N2 - The objective of this research was to determine the resistance of frequently used sealing materials such as EPDM, FKM, FVMQ, CR, CSM, IIR, NBR, PA, PUR and VMQ in aged biodiesel and heating oil B10 with 10 % biodiesel. The mass, tensile strength, breaking elongation and Shore hardnesses of the test specimens were determined before and after exposure in non-aged, one-year, two-year, three-year and four-year aged biodiesel and B10 at 20 °C, 40 °C and 70 °C. A threshold for the reduction in tensile properties and Shore hardness is not set in the international standards. Therefore, a threshold of 15 % was set for the evaluation of the compatibility. The decrease in tensile properties and Shore hardness increased with the age and the temperature of the biodiesel and the heating oil. The age of the biodiesel was not relevant for the sealing materials CR, CSM, EPDM, IIR and NBR, which were generally not resistant to biodiesel and B10. FKM and PA showed high compatibility in non-aged and aged biodiesel. FVMQ and PA could be evaluated as resistant in non-aged and aged B10 at 20°C and 40°C, whereas FKM was resistant up to 70°C despite of the age of B10. T2 - CORROSION 2017 CY - New Orleans, LA, USA DA - 26.03.2017 KW - Sealing materials KW - Compatibility KW - Aged biodiesel KW - Aged heating oil with 10% biodiesel (B10) KW - Tensile properties KW - Shore hardness PY - 2017 AN - OPUS4-39640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility evaluations of sealing materials with aged biofuels T2 - CORROSION 2017 N2 - The objective of this research was to determine the resistance of frequently used sealing materials such as EPDM, FKM, FVMQ, CR, CSM, IIR, NBR, PA, PUR and VMQ in aged biodiesel and heating oil B10 with 10 % biodiesel. The mass, tensile strength, breaking elongation and Shore hardnesses of the test specimens were determined before and after exposure in non-aged, one-year, two-year, three-year and four-year aged biodiesel and B10 at 20 °C, 40 °C and 70 °C. A threshold for the reduction in tensile properties and Shore hardness is not set in the international standards. Therefore, a threshold of 15 % was set for the evaluation of the compatibility. The decrease in tensile properties and Shore hardness increased with the age and the temperature of the biodiesel and the heating oil. The age of the biodiesel was not relevant for the sealing materials CR, CSM, EPDM, IIR and NBR, which were generally not resistant to biodiesel and B10. FKM and PA showed high compatibility in non-aged and aged biodiesel. FVMQ and PA could be evaluated as resistant in non-aged and aged B10 at 20°C and 40°C, whereas FKM was resistant up to 70°C despite of the age of B10. T2 - CORROSION 2017 CY - New Orleans, LA, USA DA - 26.03.2017 KW - Sealing materials KW - Compatibility KW - Aged biodiesel KW - Aged heating oil with 10% biodiesel (B10) KW - Tensile properties KW - Shore hardness PY - 2017 SP - Paper 8847, 1 EP - 12 PB - NACE International, Publications Division CY - Houston, TX, USA AN - OPUS4-39637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Niebergall, Ute T1 - Comparsion of the stress crack resistance of polyethylene grades with the test performance behaviour of packagings for the transport of dangerous goods T2 - EUROCORR 2010 - The European Corrosion Congresss T2 - EUROCORR 2010 - The European Corrosion Congresss CY - Moscow, Russia DA - 2010-09-13 PY - 2010 AN - OPUS4-22169 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit T1 - Comparsion of the resistance to oxidative degradation of polyethylene grades with the test performance behaviour of packagings for the transport of dangerous goods T2 - CORROSION 2010 T2 - CORROSION 2010 CY - San Antonio, TX, USA DA - 2010-03-14 PY - 2010 AN - OPUS4-21052 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Deuerler, Frederike T1 - Comparsion of the notched impact strength at - 30 °C of polyethylene grades with the test performance behavior of packagings for the transport of dangerous goods T2 - NACE Konferenz N2 - The notched impact strength at -30 °C is one of the selected properties, together with the corresponding test method and tolerances, for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk containers (IBCs) for the transport of dangerous goods. The marginal drop heights determined with the drop test at -18 °C after pre-storage of the test samples with 55 % nitric acid at 40 °C only partly related to the notched impact strength at -30 °C. The Charpy method is only suitable for classifying the grade in relation to toughness behavior and using this classification for comparison with other grades. Notched impact strength can provide a qualitative indication if the test samples fail under shock forces. Conditioning the design types with 55 % nitric acid for 21 days at 40 °C causes an increase in the marginal drop heights of the design types in drop tests at -18 °C when compared with design types without pre-storage. Post-crosslinking of the grades increases stiffness because of the acidic influence. T2 - NACE Konferenz CY - Houston, TX, USA DA - 13.03.2011 PY - 2011 AN - OPUS4-23377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niebergall, Ute A1 - Weltschev, Margit T1 - Comparison of the stress crack resistance of polyethylene grades with the test performance behaviour of packagings for the transport of dangerous goods T2 - PPS-27 - 27th World congress of the polymer processing society N2 - Resistance to stress cracking by wetting solution is one of the selected properties together with the corresponding test method FNCT and tolerances for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk Containers (IBCs) for the transport of dangerous goods. The environmental stress crack resistance determined by Full Notch Creep Test (FNCT) represents the impacts from the stacking tests at 40 °C performed with Standard liquid wetting solution (without pre-storage) and with normal butyl acetate saturated wetting solution (pre-storage with normal butyl acetate). Environmental stress crack resistance determined with FNCT for the polyethylene grades was related to the times to failure of different jerrican samples made of these grades in stacking tests with 5 % wetting solution and a n-butyl acetate saturated wetting solution (pre-storage with n-butyl acetate) at 40 °C. The FNCT is suitable for comparison of polyethylene grades in relation to environmental stress crack resistance independent of their use as drum, IBC or jerrican material. The stiffness of polyethylene grades should be taken into account to the comparison as jerricans are not only chemically but also mechanically stressed. T2 - PPS-27 - 27th World congress of the polymer processing society CY - Marrakech, Morocco DA - 10.05.2011 KW - Gefahrgutverpackungen KW - Polyethylenformstoffe KW - Full notch creep test KW - Stapeldruckprüfung PY - 2011 SP - 1 EP - 4 AN - OPUS4-23834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Niebergall, Ute T1 - Comparison of the stress crack resistance of polyethylene grades with the test performance behaviour of packagings for the transport of dangerous goods T2 - EUROCORR 2010 - From the earth´s depths to space heights N2 - Resistance to stress cracking by wetting solution is one of the selected properties together with the corresponding test method FNCT and tolerances for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk containers (IBCs) for the transport of dangerous goods. The environmental stress crack resistance determined by Full Notch Creep Test (FNCT) represents the impacts from the stacking tests at 40 °C performed with standard liquid wetting solution (without pre-storage) and with normal butyl acetate saturated wetting solution (pre-storage with normal butyl acetate). Environmental stress crack resistance determined with FNCT for the polyethylene grades was related to the times to failure of different jerrican samples made of these grades in stacking tests with 5% wetting solution and a n-butyl acetate saturated wetting solution (pre-storage with n-butyl acetate) at 40 °C. The FNCT is suitable for comparison of polyethylene grades in relation to environmental stress crack resistance independent of their use as drum, IBC or jerrican material. The stiffness of polyethylene grades should be taken into account to the comparison as jerricans are not only chemically but also mechanically stressed. T2 - EUROCORR 2010 CY - Moscow, Russia DA - 2010-09-13 KW - Polyethylenformstoffe KW - Gefahrgutverpackungen KW - Spannungsrissbeständigkeit KW - Stapeldruckprüfungen PY - 2010 N1 - Serientitel: EFC-Event – Series title: EFC-Event IS - 324 SP - 1 EP - 6 PB - DECHEMA CY - Moscow AN - OPUS4-21974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Niebergall, Ute T1 - Comparison of the stress crack resistance of polyethylene grades with the test performance behaviour of packagings for the transport of dangerous goods N2 - Technically high-quality hollow articles made of polyethylene have proved many times their value as dangerous goods packagings. Design type tests according to the international regulations for the transport of dangerous goods - drop test, stacking test, hydraulic pressure test and leakproofness test must be performed for every design type and manufacturer. The properties melt flow rate (MFR), relative density (D), low temperature notched Impact strength (N.I.S.) at -30 °C, environmental stress crack resistance (FNCT) and resistance to oxidative degradation Ox by nitric acid (determined by the increase of MFR) have been selected together with the corresponding test methods and tolerances for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for dangerous goods packagings and intermediate bulk containers (IBCs) – EN 15507. We wanted to proof the practical relevance of this standard by comparing the relationship between the results of the FNCT and the times to failure of design types in stacking tests with wetting solution and normal butyl acetate saturated wetting solution. T2 - EUROCORR 2010 CY - Moscow, Russia DA - 13.09.2010 KW - Drop test KW - Stacking test KW - Hydraulic pressure test KW - Leakproofness test PY - 2010 AN - OPUS4-35843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Deuerler, F. T1 - Comparison of the resistance to oxidative degradation of polyethylene grades with the test performance behavior of packagings for the transport of dangerous goods T2 - NACE International corrosion conference 2010 (Proceedings) T2 - NACE International Corrosion Conference 2010 CY - San Antonio, Texas, USA DA - 2010-03-14 KW - Dangerous goods packagings KW - Polyethylene grades KW - Resistance to oxidative degradation KW - Design type tests KW - FTIR spectroscopy PY - 2010 SP - 10044-1 - 10044-13 AN - OPUS4-21089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie A1 - Otremba, Frank ED - Pierucci, S. ED - Klemes, J.J. ED - De Rademaeker, E. ED - Fabiano, B. ED - Buratti, S.S. T1 - Comparison of the operating life of tank containers, tank vehicles and rail cars for the carriage of dangerous goods in practice, analysis of causes of damage T2 - Proceedings of the 14th EFCE symposium on loss prevention and safety promotion in the process industries N2 - More than 400 Mt of dangerous materials are transported in Germany every year, of which 150 Mt are by road. Tank containers, tank vehicles and rail tank cars are used for the carriage of dangerous goods in large quantities. Data on the operating life of tanks are only available, in practice, to a minor degree. They are only partly published, mainly after accidents. The BAM-List - Requirements for Tanks for the Carriage of Dangerous Goods, which has compatibility evaluations of metallic and polymeric materials, has been the basis for substance-related prototype approvals for tank containers and portable tanks designed for the carriage of dangerous goods by the BAM since publication of the first edition in 1989. These data are also used for the approval of rail tank cars and road tank cars and are used as a source of knowledge not only in Germany but also worldwide. Tank leakages caused by tanks or rail tank cars being made of tank and sealing materials which are not resistant to the fill goods are avoided by using the material resistance data of the BAM. Corrosion damage is among the main causes of damage. Uniform and non-uniform area corrosion without mechanical stress in aqueous substances is one of the most frequent types of corrosion during the transport of chemicals in tanks. Much damage by pitting corrosion occurs during the transport of substances containing chlorides or substances which separate chloride ions in the presence of moisture. Operational stresses are caused by the effects of both the road and the dangerous goods being transported. Mechanical damage often results from long-term overstressing and occurs after longer operating times. Operational failures cause damage which may appear during the service of tank containers, road tank cars or rail tank cars. The damage results from the inattention of employees when opening and closing the valves. Traffic accidents also cause damage to tanks and frames. Many cases of damage are due to weld area cracks resulting from four basic errors in construction, material, manufacturing and operation. Manufacturing errors can be undetected and the starting point of cracks which only grow under service conditions. Manufacturing errors result from variations in measurement and design, fittings, state of surface (hardness, abrasiveness) and mechanical surface damage (scratches, cracks). Incorrectly welded joints and errors during mechanical deformation are typical mistakes when installing the component parts. Variations in the wall thickness or combinations of different materials lead to manufacturing errors too. A lot of tanks are not used for the transport of dangerous goods before the end of their service life as they do not fulfil the revised technical safety requirements in the Dangerous Goods Regulations. Predictions in the BAM-List based on literature data and corrosion test results are reflected in the service (operating) life. Rail tank cars made of carbon steel, for example, which are mainly used for the transport of petroleum products, can achieve a service life of 40 – 50 y. Rail tank cars produced of austenitic CrNi- or CrNiMo-steel can reach an operating life of at least 30 y, whereby the corrosiveness of the transport substances plays an important role. T2 - 14th International symposium on loss prevention and safety promotion in the process industries CY - Florence, Italy DA - 12.05.2013 KW - Gefahrguttanks KW - Eisenbahnkesselwagen KW - Schadensursachen KW - Lebensdauer PY - 2013 SN - 978-88-95608-22-8 DO - https://doi.org/10.3303/CET1331094 SN - 1974-9791 N1 - Serientitel: Chemical engineering transactions – Series title: Chemical engineering transactions IS - 31 SP - 559 EP - 564 PB - AIDIC, Associazione Italiana di Ingegneria Chimica CY - Milano AN - OPUS4-28568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie A1 - Otremba, Frank T1 - Comparison of the Operating Life of Tank Containers, Tank Containers, Tank Behicles and Rail Tank Cars for the Carriage of Dangerous Goods in Practice, Analyses of Causes of Damage T2 - Loss Preention T2 - Loss Preention CY - Florence, Italy DA - 2013-05-12 PY - 2013 AN - OPUS4-28608 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Deuerler, F. T1 - Comparison of the notched impact strength at -30°C of polyethylene grades with the test performance behavior of packagings for the transport of dangerous goods T2 - NACE International corrosion conference 2011 (Proceedings) N2 - The notched impact strength at -30 °C is one of the selected properties, together with the corresponding test method and tolerances, for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk containers (IBCs) for the transport of dangerous goods. The marginal drop heights determined with the drop test at -18 °C after pre-storage of the test samples with 55 % nitric acid at 40 °C only partly related to the notched impact strength at -30 °C. The Charpy method is only suitable for classifying the grade in relation to toughness behavior and using this classification for comparison with other grades. Notched impact strength can provide a qualitative indication if the test samples fail under shock forces. Conditioning the design types with 55 % nitric acid for 21 days at 40 °C causes an increase in the marginal drop heights of the design types in drop tests at -18 °C when compared with design types without pre-storage. Post-crosslinking of the grades increases stiffness because of the acidic influence. T2 - NACE International Corrosion Conference 2011 CY - Houston, TX, USA DA - 13.03.2011 KW - Dangerous goods packagings KW - Polyethylene grades KW - Notched impact strength at -30°C KW - Design type tests KW - Pre-storage with nitric acid PY - 2011 SP - 1 EP - 11 (Paper 11373) AN - OPUS4-23386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit T1 - Comparison of the material properties of polyethylene grades with the test performance behaviour of packgings for the transport of dangerous goods in dependence on the pre-storage time with 55 % nitirc acid T2 - Eurocorr 2011 T2 - Eurocorr 2011 CY - Stockholm, Sweden DA - 2011-09-04 PY - 2011 AN - OPUS4-24408 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Niebergall, Ute T1 - Comparison of the material parameters of polyethylene grades with the test performance behaviour of packagings for the transport of dangerous goods in dependence on the pre-storage time with 55% nitric acid T2 - EUROCORR 2011 - Developing solutions for the global challenge N2 - The material parameters melt flow rate MFR, density D, notched impact strength N.I.S. at -30 °C, stress crack resistance FNCT and resistance to oxidative degradation Ox (determined by the increase of MFR) have been selected for a comparison of polyethylene grades for one design type in the “European Standard EN 15507 - Transport packaging for dangerous goods - Comparative material testing of polyethylene grades”. The parameters have a systematic relationship with design type tests. The notched impact strength at -30 °C and the resistance to oxidative degradation of polyethylene grades determined with test specimens of compression moulded sheets are directly comparable with drop tests at -18 °C of design types produced of these grades after pre-storage with 55 % nitric acid for 21 days at 40 °C. The impact of the pre-storage time of jerricans with 55 % nitric acid at 40 °C and 23 °C on the marginal drop heights in drop tests at -18 °C, on the MFR and on the tensile properties tensile strength, breaking elongation and the elastic modulus were investigated. Packaging design types (jerricans) made of three polyethylene grades from different producers were pre-stored with 55 % nitric acid for 21,42 and 84 days at 40 °C as well as for six months at 23 °C. The MFR and tensile properties of test specimens taken from the design type side walls as well as the marginal drop heights of the jerricans in drop tests at -18 °C were determined. The values of the notched impact strength at -30 °C of polyethylene grades are not comparable with the marginal drop heights determined in drop tests at -18 °C. The oxidative damaging impact of nitric acid has a greater effect on the grade with lower resistance to oxidative degradation by reducing more significantly the marginal drop heights with increasing pre-storage time. Pre-damage with 55 % nitric acid for 21 days at 40 °C, as recommended in ISO 16101 and EN 15507 caused an increase in the marginal drop heights of most design types in drop tests when compared with design types without pre-damage. The test results demonstrated clearly that pre-storage of the jerricans for six months at 23 °C caused a higher increase in the MFR and lower marginal drop heights of the jerricans in drop tests at -18 °C compared with pre-storage of the jerricans for 21 days at40 °C. The mechanical properties change as a result of diffusion of nitric acid into the polyethylene grades and the reaction of the nitric acid with the polymers. The percentage decrease and increase in the tensile strength, breaking elongation and elasticity modulus of test specimens taken from the design type side walls after different pre-storage times were only partly comparable with the marginal drop heights in drop tests at -18 °C. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011. KW - Gefahrgutverpackungen KW - Polyethylenformstoffe KW - Baumusterprüfungen KW - Nachweis der chemischen Verträglichkeit KW - Oxidativer Abbau PY - 2011 SP - 1 EP - 12 AN - OPUS4-24346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit A1 - Niebergall, Ute A1 - Werner, Jan T1 - Comparison of the material parameters of polyethalene grades with the test performance behaviour of packagings for the transport of dangerous goods in relation to the pre-storage time with 55% nitric acid JF - Packaging technology & science N2 - The material parameters melt flow rate (MFR), density (D), notched impact strength (NIS) at –30°C, stress crack resistance [determined with the Full Notch Creep Test (FNCT)] and resistance to oxidative degradation (Ox) have been selected for a comparison of polyethylene grades in the European standard EN 15507. These parameters have a relationship with design type tests of packagings for the transport of dangerous goods. This paper presents the results of additional investigations to determine the impact of the pre-storage time of jerricans with 55% nitric acid at 40°C and 23°C on the marginal drop heights in drop tests at –18°C, on the MFR and on the tensile properties. Jerricans made of different polyethylene grades were pre-stored with 55% nitric acid for 21, 42 and 84 days at 40°C and for six months at 23°C. The tests showed that the NIS values at –30°C of polyethylene grades were not comparable with marginal drop heights determined in drop tests at –18°C. Pre-damage with 55% nitric acid for 21 days at 40°C led to an increase in the marginal drop heights of the jerricans. Altering the test regulations by increasing pre-storage time with 55% nitric acid to 42 days would be an alternative. The test results demonstrated clearly that pre-storage of the jerricans for six months at 23°C caused a higher increase in the MFR and lower marginal drop heights for the jerricans when compared with pre-stored jerricans for 21 days at 40°C. KW - Polyethylene grades KW - Resistance to oxidative degradation KW - Nitric acid KW - Tensile properties KW - Packagings for the transport of dangerous goods KW - Drop tests PY - 2013 DO - https://doi.org/10.1002/pts.2037 SN - 0894-3214 VL - 27 SP - 409 EP - 421 PB - Wiley CY - Chichester, UK AN - OPUS4-28731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie A1 - Eiben, Mario T1 - Comparison of the environmental stress cracking behaviour of polyethylene and polyethylene terephthalate as materials for dangerous goods packagings N2 - The chemical industry has expressed great interest in using polyethylene terephthalate (PET) as material for packagings for the transport of dangerous goods. Due to the high strength and stiffness of PET, the wall thickness and weight of packagings can be reduced. This is a relevant cost factor. PET is a semi-crystalline thermoplast which is produced by polycondensation of terephthalic acid and ethylene glycol. According to the European dangerous goods regulations RID and ADR, samples of PET design types of packagings for dangerous goods must be pre-stored with the original filling good for six months at 23°C, before the design type tests can be carried out. For packagings made of polyethylene (PE) tests to prove the stress cracking resistance by using laboratory methods are possible to reduce time and costs. Therefore, standard liquids, simulating the different types of damaging effects on PE are defined in RID and ADR. However, there is no information and research available about the damaging mechanisms on PET in comparison to PE, especially regarding to stress cracking resistance and test methods. The aim of this work is to compare the stress cracking resistance of PE and PET with the Full Notch Creep Test (FNCT), which was developed by chemical industry and is described in the standards EN ISO 16101 and EN 15507. It was investigated whether testing specimens made of PE and PET with a full coplanar notch around the middle of the specimens show weakening after the impact of a tensile force in a wetting solution (Lutensol® FSA 10) at 50°C in a test device on the basis of the FNCT. The test results confirmed the suitability of the method for eight PE grades. Unfortunately, this method couldn’t be used for PET because the specimens broke during notching. In addition the molding of the sheets and the following temper process for twelve hours are very time-consuming, and the specimens broke during notching due to the high brittleness of PET. Another possibility to provide evidence of stress cracking resistance of PE packagings is laid down in BAM’s Dangerous Goods Rule BAM-GGR 015. This test was carried out with PE and PET bottles to compare both materials. Therefore 1l test bottles were filled with a 5% wetting solution and mounted with a clamping tool for 28 days at 40°C. Tensile test specimens were cut out afterwards from the middle of the bottles in the deformed areas. Tensile strength and breaking elongation of PE specimens were determined in comparison to the PET specimens. The tensile properties of the PET specimens couldn’t be determined due to the strength and the stiffness of the material. In conclusion the only way to provide information about the stress cracking resistance of PET was to perform stacking tests. 1l bottles made of PE and PET were filled with a 5% wetting solution and stored with a stacking load for 28 days at 40°C according to EN ISO 16495. Design types of PE and PET both passed the stacking tests. T2 - EUROCORR 2016 CY - Montpellier, France DA - 11.09.2016 KW - polyethylene terephthalate KW - stress cracking resistance KW - test methods KW - dangerous goods packagings PY - 2016 AN - OPUS4-37448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Bäßler, Ralph T1 - Comparison of the Corrosion Resistance to Dangerous Goods of Austenitic CrNiMo and Duplex Steels T2 - CORROSION 2014 T2 - CORROSION 2014 CY - San Antonio, TX, USA DA - 2014-03-09 PY - 2014 AN - OPUS4-30429 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Bäßler, Ralph T1 - Comparison of the corrosion resistance to dangerous goods of austenitic CrNiMo and duplex steels T2 - Corrosion 2014 N2 - The “BAM-List - Requirements for Tanks for the Transport of Dangerous Goods” is the basis in Germany for substance-related prototype approvals for tank Containers in Germany. Compatibility evaluations of selected metallic materials and polymeric materials under the influence of approximately 7200 dangerous goods have been published in the BAM-List since 1989. The austenitic CrNi- and CrNiMo-steels - UNS S30403, UNS S31600, UNSS31603 and UNS S31635 - are the materials mostly used worldwide for transport tanks. The duplex Steel UNS S31803 has been put on the BAMList due to the great interest of tank producers and transport Companies. Using UNS S31803 instead of 316L, the weight of the tanks can be reduced, and the list of transportable goods can be extended. The objective of these investigations was to compare the corrosion resistance of duplex Steel UNS S31803 and austenitic Steel UNS S31603. Therefore, test specimens of both steels were exposed to selected corrosive substances, such as formic acid, acetic acid, phosphoric acid, sulfuric acid, nitrating acid, monochloroacetic acid and trichloroacetone at 55 °C (30 °C, 70 °C). The test results have shown that the duplex Steel UNSS31803 is a good alternative to austenitic CrNiMo-steel UNS S31603 for tanks carrying corrosive dangerous goods. T2 - Corrosion 2014 CY - San Antonio, TX, USA DA - 09.03.2014 KW - Austenitic CrNiMo steel KW - Duplex steel KW - Corrosion resistance KW - Dangerous goods KW - BAM-list PY - 2014 SP - Paper 3786, 1 EP - 11 AN - OPUS4-30412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Weltschev, Margit A1 - Deuerler, F. ED - Suter, G. ED - de Rademaeker, E. T1 - Comparison of material parameters of polyethylene grades and the test performance behaviour of packagings for the transport of dangerous goods T2 - 13th International symposium on loss prevention and safety promotion in the process industries (Proceedings) T2 - 13th International symposium on loss prevention and safety promotion in the process industries CY - Brugge, Belgium DA - 2010-06-06 KW - HDPE-Formstoffe KW - Werkstoffkennwerte KW - Spannungsrissbeständigkeit KW - Verpackungen KW - Baumusterprüfung PY - 2010 SN - 978-90-76019-291 VL - 02 SP - 383 EP - 386 CY - Brugge, Belgium AN - OPUS4-21451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit T1 - Comparison between material parameters of polyethylene grades and the test performance behaviour of packagings for the transport of dangerous goods T2 - IPRI 2011 T2 - IPRI 2011 CY - Berlin, Germany DA - 2011-05-16 PY - 2011 AN - OPUS4-23661 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit T1 - Comparison between material parameters of polyethylene grades and the test performance behaviour of packaging for the transport of dangerous goods JF - Packaging technology & science N2 - For the characterization and the comparison of polyethylene grades used for the manufacture of packaging and intermediate bulk container, the following parameters are required: melt flow rate (MFR), density (D), low-temperature notched impact strength, full notch creep test (FNCT) and increase of MFR by molecular degradation (resistance to oxidative degradation). The relationship between these material parameters determined on the basis of specimens prepared from compression-moulded sheets of polyethylene grades and the test behaviour of packaging has been investigated in several tests. The environmental stress crack resistance determined by FNCT represents the impacts from the stacking tests performed with standard liquid wetting solution (without pre-storage) and with normal butyl-acetate-saturated wetting solution (pre-storage with normal butyl acetate). Resistance to molecular degradation by the determination of MFR increase is related to the impacts in drop tests and stacking tests performed after pre-storage for 21 days with standard liquid 55% nitric acid at 40°C. The low-temperature impact strength is directly comparable with the impacts in drop tests at -18°C performed without pre-storage and after pre-storage with 55% nitric acid. A partly good relationship was found between the test results and the material parameters. Conditioning the design types with 55% nitric acid for 21 days causes an increase in the marginal drop heights of the design types in drop tests at -18°C when compared with design types without pre-storage. Post-cross-linking of the grades increases stiffness because of the acidic influence. KW - Dangerous goods packaging KW - Polyethylene grades KW - Material parameters KW - Design-type tests PY - 2011 DO - https://doi.org/10.1002/pts.940 SN - 0894-3214 VL - 24 IS - 6 SP - 361 EP - 371 PB - Wiley CY - Chichester, UK AN - OPUS4-23756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela T1 - Compability of polyethylene grades with biofuels and biodiesel-heating oil blends T2 - EUROCORR 2015 T2 - EUROCORR 2015 CY - Graz, Östereich DA - 2015-09-06 PY - 2015 AN - OPUS4-34551 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Jochems, Frank A1 - Heming, Frank T1 - Change in properties of sealing materials in biofuels, biodiesel-heating oil blends, diesel and premium grade fuel at different temperatures T2 - EUROCORR 2015 - European corrosion congress (Proceedings) N2 - Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. Therefore frequently used sealing materials such as FKM (fluorocarbon rubber), FVMQ (methyl-fluoro-silicone rubber), VMQ (methyl-vinyl-silicone rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), IIR (butyl rubber), PA (polyamides), N8R (acrylonitrile-butadiene rubber) and PUR (polyester urethane rubber) were exposed to E1 0, diese I fuel with 5% biodiesel, non-aged and 2 year aged 810 (heating oil with 10% biodiesel), and for comparison to pure diese! fuel, standard heating oil and Super plus without bioethanol at 20 °C, 40 oc and 70 oc for 84 days. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens to the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore a threshold of 15% was determined for the evaluation of the compatibility. The sealing materials FKM, EPDM, N8R, FMVQ, CSM and PA were evaluated on the basis of this threshold as resistant in E1 0 at 20 oc and 40 °C. FKM, FVMQ and PA were resistant at 40 oc , and none of the materials were resistant at 70 °C. FKM and FVMQ absorbed much less 810 and swelled less. CR, CSM, EPDM, IIR, N8R and VMQ were not resistant to 810 at all at 20 oc, 40 oc and 70 oc as the decrease in the tensile properties was significantly over 50%. FVMQ and PA could be evaluated as resistant in non-aged and two year aged 810 at 20 oc and 40 oc, whereas FKM was resistant up to 70 °C. FKM, PA and PUR were evaluated as resistant in standard heating oil and pure diese! fuel at temperatures up to 40°C, only FKM was resistant up to 70°C. FVMQ, FKM, N8R, VMQ, CR and IIR can be evaluated as resistant in premium grade fuel Super plus without ethanol at 20 oc. FKM, FVMQ, VMQ and IIR were still resistant at 40 °C. FKM and FVMQ were evaluated as resistant with restrictions at 70 °C. ln summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. T2 - EUROCORR 2015 - European corrosion congress CY - Graz, Austria DA - 06.09.2015 KW - Compatibility KW - Sealing materials KW - Biofuels KW - Tensile properties KW - Shore hardness PY - 2015 SP - Paper 16_173, 1 EP - 11 AN - OPUS4-34204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Jochems, Frank A1 - Heming, Frank T1 - Change in properties of sealing materials in biofuels, biodiesel-heating oil blends, diesel and premium grade fuel at different temperatures T2 - EUROCORR 2015 T2 - EUROCORR 2015 CY - Graz, Österreich DA - 2015-09-06 PY - 2015 AN - OPUS4-34547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -