TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of sealing materials with biofuels, biodiesel heating oil blends and premium grade fuel at different temperatures T2 - Frontiers in polymer science CY - Riva del Garda, Italien DA - 2015-05-20 PY - 2015 AN - OPUS4-33314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Heming, Frank A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of sealing materials with biofuels and biodiesel-heating oil blends N2 - Changes in fuel composition and the introduction of alternative fuels often create problems of degradation in materials. The objective of this research is to study the interaction of the sealing materials FKM, EPDM, CR, CSM, N8R, IIR, VMQ, FVMQ and PA and biofuels such as non-aged and 2 year aged biodiesel (FAME), E1 0 (fuel with 10% ethanol, E85 (fuel with 85% ethanol} and non-aged and 1 year aged 810 (heating oil with 10% biodiesel) in comparison with premium grade fuel without ethanol. Exposure tests were performed with test specimens at 20 °C, 40 oc and 70 oc for 84 days to document the changes in mass, volume and tensile properties. The sealing materials FKM, FVMQ and PA were evaluated as resistant in E10, and FVMQ, VMQ and PA as resistant in E85 at 20 oc and 40 oc. S welling resulted from the high absorption by the elastemers CR, CSM, EPDM, IIR and N8R in comparison to their dissolution in non-aged biodiesei at 40 °C. FKM was still resistant in aged biodiesei at 40 oc but only to a limited degree at 70 °C. The sealing materials CR, CSM, EPDM, IIR and N8R were damaged to a high extent in non-aged and aged 810. Of all the sealing materials, FKM and FVMQ showed high compatibility with these biofuels up to 70 °C. T2 - Corrosion 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Biofuels KW - Sealing materials KW - Compatibility KW - Change in tensile properties KW - Change in mass PY - 2015 SP - Paper No. 5535, 1 EP - 13 AN - OPUS4-32969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Heming, Frank A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of sealing materials with biofuels and biodiesel-heating oil blends T2 - CORROSION 2015 CY - Dallas, USA DA - 2015-03-15 PY - 2015 AN - OPUS4-32909 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit T1 - Compatibility of sealing materials with biofuels and biodiesel heating oil blends at different temperatures N2 - The objective of this research was to determine the resistance of frequently used sealing materials such as FKM (fluorocarbon rubber), FVMQ (methyl-fluoro-silicone rubber), VMQ (methyl-vinyl-silicone rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), IIR (butyl rubber), PA (polyamides), NBR (acrylonitrile-butadiene rubber) and PUR (polyester urethane rubber) in fuels and heating oil with admixtures of biogenic sources such as E10 (fuel with 10 % ethanol), E85 (fuel with 85 % ethanol), non-aged and aged biodiesel, diesel fuel with 5 % biodiesel, non-aged and aged B10 (heating oil with 10 % biodiesel) at 20 °C, 40 °C and 70 °C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the fuels. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore a threshold of 15 % was determined for the evaluation of the compatibility. In summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. T2 - 13th International Congress on Biofuels & Bioenergy CY - Ottawa, Canada DA - 18.10.2018 KW - Sealing materials KW - Biodiesel KW - Diesel fuel KW - Heating oil with 10 % biodiesel KW - Tensile properties KW - Shore hardness KW - Fuel with 10 % ethanol PY - 2018 AN - OPUS4-46358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit T1 - Compatibility of sealing materials with biofuels and biodiesel heating oil blends at different temperatures N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester, FAME) represent an important renewable fuel alternative to petroleum-derived transport fuels. Increasing biofuels use would bring some benefits, such as a reduction in oil demands and greenhouse gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The objective of this research was to determine the resistance of frequently used sealing materials such as CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), EPDM (ethylene-propylene-diene rubber), FKM (fluorocarbon rubber), FVMQ (methyl-fluorosilicone rubber), IIR (butyl rubber), NBR (acrylonitrile-butadiene rubber), PA (polyamides), PUR (polyester urethane rubber) and VMQ (methyl-vinyl-silicone rubber), in heating oil with admixtures of biogenic sources such as E10 (fuel with max. 10 % ethanol), E85 (fuel with 85 % ethanol), non-aged and aged biodiesel, diesel fuel with 5 % biodiesel, non-aged and aged B10 (heating oil with 10 % biodiesel) at 20 °C, 40 °C and 70 °C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the fuels. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was set for the evaluation of the compatibility. The sealing materials CR, CSM, EPDM, IIR and NBR were generally not resistant to biodiesel and B10. In summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. KW - Compatibility evaluation KW - Polymers KW - FAME KW - Heating oil with 10 % FAME PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479722 DO - https://doi.org/10.15344/2456-351X/2019/165 SN - 2456-351X VL - 4 IS - 165 SP - 4 EP - 9 PB - Graphyonline Publications Pvt. Ltd. CY - Bangalore, Karnataka, Indien AN - OPUS4-47972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Haufe, Manuela T1 - Compatibility of sealing materials with biodiesel, bioethanol-gasoline and biodiesel-heating oil blends N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester) represent an impor-tant renewable fuel alternative to petroleum-derived transport fuels. Increasing bio-fuel use would bring some benefits, such as a reduction in oil demands and green-house gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The aim of this work is to study the interaction between sealing materials such as FKM (fluorocarbon rubber), EPDM (ethylene-propylene-diene rubber), CR (chloro-prene rubber), CSM (chlorosulfonated polyethylene), NBR (acrylonitrile-butadiene rubber), IIR (butyl rubber), VMQ (methyl-vinyl-silicone rubber) and FVMQ (methyl-fluoro-silicone rubber) and biofuels such as biodiesel, E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel) at 70°C for 84 days. Experiments were con-ducted with tests specimens of theses elastomers to document the changes in the mass and tensile properties of these sealing materials according to ISO 1817. The exposure tests of the elastomers in E85 at 70°C showed that the weight gain caused by swelling of the test specimens was in the range of 3% to 12%. However, the weight gain of the fluorinated elastomers was at the lower end of this range. Tensile strength and breaking elongation decreased by 22% to 61% or 13% to 77%. The lowest decrease in the tensile properties was determined for FKM, EPDM und IIR. These sealing materials were evaluated as resistant to E85 up to a temperature of 70°C. Biodiesel absorbed water more quickly and aged faster than conventional diesel fuel. The weight loss of the elastomers varied between 9% (FKM) and 126% (CSM) in biodiesel. FKM was evaluated as resistant with a 16% reduction in tensile strength, a 2% reduction in breaking elongation and low weight loss. NBR, EPDM, CSM and VMQ were evaluated as not resistant. CSM even lost 84% of its original tensile strength and 78% of its breaking elongation. The highest weight gain as a result of swelling was measured for CSM with 86%, for EPDM with 84% and for VMQ with 54% in B10, while the fluorine-containing elasto-mers FKM (1%) and FVMQ (3%) absorbed much less B10 and swelled less. FKM lost 23% in tensile strength and 17% in breaking elongation; FMVQ lost 29% in ten-sile strength and 36% in breaking elongation. FMVQ was, therefore, only limited in its resistance to B10. The elastomers NBR, EPDM, CSM and VMQ were not resistant to B10 at all as the decrease in the tensile properties was significantly over 50%. NBR lost about 93% and CSM about 100% of its breaking elongation. The conclusion of the investigations at 70°C is that FKM is the most resistant sealing material in biodiesel, E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel). T2 - EUROCORR 2013 - The European corrosion congress CY - Estoril, Portugal DA - 01.09.2013 KW - Compatibility KW - Sealing materials KW - Biodiesel KW - E85 KW - B10 KW - Mass loss KW - Tensile properties PY - 2013 SN - 978-989-8601-31-5 SP - 1 EP - 6 AN - OPUS4-29150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Haufe, Manuela T1 - Compatibility of sealing materials with biodiesel, bioethanol-gasoline and biodiesel-heating oil blends T2 - European Corrsosion Congress 2013 CY - Estoril, Portugal DA - 2013-09-01 PY - 2013 AN - OPUS4-29131 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Bäßler, Ralph T1 - Compatibility of polymers with heating oil with 20 % biodiesel at different temperatures under static and compressed conditions N2 - Biodiesel is viewed as a major source of energy. In areas such as the European Union, where 80 % of the oil-based fuel is imported, there is also the desire to reduce dependence on external oil supplies. Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with 20 % biodiesel (B20) in comparison to pure heating oil. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties. Extraction alters the fuel chemistry. These chemical changes could also accelerate the degradation (hydrolysis and oxidation) of the polymeric material with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used materials for components in middle distillate facilities such as ACM, FKM, HNBR, PA, PE, POM, PUR and PVC in heating oil and heating oil blend B20 for 84 days at 40 °C, and FKM, HNBR, PA, POM, PUR and PVC at 70 °C. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after exposure for 84 (42) days in the test fuels under static conditions. For the investigations under compressed conditions, the mass and the compression set of FKM test specimens were determined before and after exposure for 3, 7, 14, 28, 56 and 90 days in B20 at 40 °C and 70 °C according to ISO 815-1 “Rubber, vul-canized or thermoplastic - determination of compression set – Part 1: At ambient or elevated temperatures”. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was determined for the evaluation of the compatibility. The change of tensile strength and breaking elongation of test specimens made of ACM, FKM, HNBR, PA, PE, POM, PUR and PVC exposed to heating oil and the blend B20 was less than 15 % at 40 °C. A maximum reduction in Shore hardness A of 14 % was determined for ACM at 40 °C and for HNBR of 15 % at 70 °C. It can be concluded that ACM, FKM, HNBR, PA, PE, POM, PVC and PUR were resistant in B20 at 40°C. FKM, PA, POM and PVC were evaluated as resistant in heat-ing oil and B20 at 70 °C, HNBR and PUR were not resistant in these fuels at 70°C. Based on the mass increase and compression set values of FKM test specimens it can be stated that FKM is resistant in B20 under compressed conditions at 40 °C and 70 °C. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil - biodiesel - blend KW - Polymeric materials KW - Compatibility KW - Tensile properties KW - Shore Hardness PY - 2019 AN - OPUS4-49002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, S. A1 - Bäßler, Ralph T1 - Compatibility of polymers with aged heating oil containing 10 % and 20 % biodiesel under static conditions N2 - Biodiesel is viewed as a major source of energy. In areas such as the European Un-ion, where 80 % of the oil-based fuel is imported, there is also the desire to reduce dependence on external oil supplies. Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with 20 % biodiesel (B20) in comparison to pure heating oil. The polarity of biodiesel increases its solvency and facilitates permeation and extrac-tion. Solvation, swelling and/or extraction lead to changes in the physical properties. Extraction alters the fuel chemistry. These chemical changes could also accelerate the degradation (hydrolysis and oxidation) of the polymeric material with the loss of additives and stabilizers. Exposure tests to determine the resistance of polymers frequently used for compo-nents in middle distillate facilities, such as ACM, FKM, HNBR, PA, PE, POM, PUR and PVC in heating oil and a blend of heating oil and 20 % biodiesel (B20) were al-ready performed. The objective of this research was to determine the resistance of these polymers in 8-year aged heating oil blend B10 and 1-year aged blend B20 at 40 °C. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after exposure for 84 (42) days in the test fuels under static conditions. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was deter-mined for the evaluation of the compatibility. A significant reduction in Shore hardness was determined after exposure of ACM and PUR test specimens in 1-year aged B20. The tensile strength of PUR test specimens in 1-year aged B20 was reduced by more than 50 %, and the breaking elongation by more than 30 %. A decrease in breaking elongation was measured for POM test specimens after ex-posure to 1-year aged B20 by 25 % (limited resistance). 8-year aged B10 had a stronger effect than 1-year aged B20 on the polymers. ACM test specimens were softened by B10 resulting in a drop of Shore hardness by over 20 %. B10 reduced tensile strength and breaking elongation of PUR test specimens by over 50 %. In contrast, the breaking elongation of POM was increased by over 270 %. It can be concluded that the polymers HNBR, FKM, PA6, PE and PVC are resistant in 1-year aged B20 whereas ACM and POM are limited resistant. PUR is not re-sistant. HNBR, FKM, PA6, PE and PVC are resistant in 8-year aged B10, whereas PUR and POM are not resistant, and ACM just limited resistant. T2 - EUROCORR 2020 CY - Online meeting DA - 07.09.2020 KW - Aged heating oil with 10% and 20% biodiesel KW - Resistance of polymers KW - Tensile properties KW - Shore hardness PY - 2020 AN - OPUS4-51240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pötzsch, Sina A1 - Weltschev, Margit A1 - Bäßler, Ralph T1 - Compatibility of polymers exposed to heating oil blends with 10 % and 20 % biodiesel (FAME) N2 - Biodiesel (FAME) from rapeseed is an environmentally friendly alternative to common fossil fuels. It is also suitable to serve as blending component to fuels like heating oil. If the fuel composition is changed, materials compatibility must be guaranteed. Adding polar biodiesel to nonpolar heating oil, changes the blend’s solvency and might cause swelling, extraction and solvation of polymers. The objective of this research was to investigate the compatibility of polymeric materials, which are commonly used for components in middle distillate facilities, along with blends of heating oil and 20 % biodiesel (B20). For this propose, ACM, HNBR, FKM, PE, PA 6, POM, PUR and PVC were exposed to heating oil and B20 for 42 and 84 days at 40 °C. In addition, the polymers HNBR, FKM, PA, POM and PVC were also exposed at 70 °C. Furthermore, the resistance of polymers in eight-year aged B10 at 40 °C was evaluated. Ageing of biodiesel increases acidity which might propagate polymer corrosion. The materials were evaluated as resistant, if the loss in tensile properties (tensile strength and elongation at break) and Shore hardness remained under 15 % compared to the initial unexposed material values. For investigations under compressed conditions, the compression set was determined for specimens of ACM, FKM and HNBR after exposure in heating oil B0 and B20 for 3,7,14, 28, 56 and 90 days at 40 °C according to ISO 815-1. It was found that the resistance in B20 at 40 °C was given for all tested polymers except PUR. In the 8 years aged B10, PUR and POM were not compatible and ACM just conditionally compatible. At 70 °C, FKM and PVC were resistant in B20, whereas HNBR and PA 6 were not compatible. Swelling occurred for the elastomers ACM, HNBR and PUR. T2 - AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 19.04.2021 KW - Biodiesel KW - FAME KW - RME KW - Polymer in fuels PY - 2021 SP - 16222-01 EP - 16222-12 CY - Houston AN - OPUS4-52499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina T1 - Compatibility of polymeric sealing materials with biodiesel heating oil blends at different temperatures N2 - Biodiesel is subject to degradation processes like oil and grease. The oxidative degradation products of vegetable oil esters in biodiesel particularly lead to enhanced sedimentation in blended fuels. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. It also accelerates the degradation (hydrolysis and oxidation) of these materials with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used polymeric materials such as ACM, EPDM, FKM, FVMQ, CR, CSM, IIR, HNBR, NBR, PA, PE; POM, PUR, PVC and VMQ in biodiesel and heating oil with 10 %/20 % biodiesel (B10/B20) at 40°C and 70°C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the biodiesel heating oil blends. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D were determined before and after exposure of the test specimens in the biofuels for 42 days. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to biodiesel and B10 at 40°C and 70°C. FKM, ACM, HNBR, PA, PE, POM, and PVC showed high compatibility in B10/B20 at 40°C. A lower compatibility was determined for ACM in biodiesel. ACM and HNBR were not resistant in B20 at 70°C. T2 - Biofuels & Bioenergy CY - Rome, Italy DA - 14.10.2019 KW - Heating oil-Biodiesel-Blend KW - Compatibility evaluations KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-49306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Rehfeldt, Rainer T1 - Compatibility of polymeric materials with heating oil/biodiesel blends at different temperatures N2 - Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with admixtures of 10 % biodiesel (B10) and 20 % biodiesel (B20). The polarity of biodiesel increases its solvency and facilitates permeation and extrac-tion. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. The objective of this research was to determine the resistance of frequently used sealing materials such as FKM, EPDM, CR, CSM, NBR, IIR, VMQ, FVMQ, PA and PUR in up to four-year aged B10 for 84 days at 20 °C, 40 °C and 70 °C. The polymeric materials: ACM, FKM, HNBR, PA, PE; POM, PUR and PVC were ex-posed to B20 for 84 days at 40°C and 70°C in another research project. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after the exposure for 84 (42) days in the heating oil blends B10 and B20. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was deter-mined for the evaluation of the compatibility. Measurements of the variations in mass, tensile properties and Shore hardness after exposure of the polymers in non-aged and aged heating oil B10 showed clearly that FKM, FVMQ and PA were the most resistant materials in B10. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to B10. Damage to the materials increased with higher test temperatures and the age of B10. FKM, POM and PVC showed high compatibility in B20 at 40°C and 70 °C. ACM, HNBR and PA were evaluated as resistant in B20 at 40 °C but not at 70°C. T2 - Corrosion 2019 CY - Warsaw, Poland DA - 27.09.2019 KW - Polymers KW - Compatibility evaluations KW - Heating oil with 10% biodiesel KW - Heating oil with 20% biodiesel KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-48146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela T1 - Compatibility of polyethylene grades with biofuels and biodiesel-heating oil blends N2 - 8iofuels including ethanol and biodiesel (fatty acid methyl ester) represent an important renewable fuel alternative to petroleum-derived transport fuels. lncreasing biofuels use would bring some benefits, such as a reduction in oil demands and greenhause gas emissions, and an improvement in air quality. T2 - EUROCORR 2015 - European corrosion congress CY - Graz, Austria DA - 06.09.2015 KW - Compatibility KW - Polyethylene grades KW - Biofuels KW - Change in MFR and tensile properties PY - 2015 SP - Paper 16_1074, 1 EP - 11 AN - OPUS4-34203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of polyethylene grades with biofuels and biodiesel-heating oil blends T2 - CORROSION 2015 CY - Dallas, USA DA - 2015-03-15 PY - 2015 AN - OPUS4-32908 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of polyehtylene grades with biofuels and biodiesel-heating oil blends N2 - The aim of this work was to study the interaction between high density polyethylene (HDPE) grades as material for dangeraus goods packagings and biofuels such as E10 (fuel with 10% ethanol), E85 (fuel with 85% ethanol), biodiesei and 810 (heating oil with 10% biodiesel). Jerricans made of two polyethylene grades were filled with these fuels and exposed to temperatures of 20 oc and 40 oc for more than one year. Tensile properlies (tensile strength, breaking elongation and elasticity modulus) and Melt Flow Rate (MFR) were determined, and Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate changes in the chemical structure. Measurements of the MFR and tensile properlies of the polyethylene grades after exposure to E1 0, E85 and 810 showed only a slightly damaging influence. A n increase in the peak of 1585 cm·1 for the (C=C) stretching vibrations was visible in the FTIR spectra after immersion tests with E85. A n increase in the MFR with the immersion time of the grades in biodiesei was measured - in parlicular, after one year of exposure. The elasticity modulus of the polyethylene grades was reduced with the immersion time too. The FTIR spectra showed a broadening of the C=O peak of 1740 cm·1 and the appearance of the hydroxyl group at 3500 cm·1. T2 - Corrosion 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Polyethylene grades KW - Biodiesel KW - E10 KW - E85 KW - B10 KW - Tensile properties KW - FTIR analysis KW - Compatibility KW - Biofuels KW - Change in MFR and tensile properties PY - 2015 SP - Paper No. 5536, 1 EP - 12 AN - OPUS4-32968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Bäßler, Ralph T1 - Compatibility of metallic tank and polymeric sealing materials with biofuels T2 - ACHEMA CY - Frankfurt am Main DA - 2015-06-15 PY - 2015 AN - OPUS4-33534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit A1 - Werner, Jan A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of high-density polyethylene grades with biofuels N2 - The aim of this work was to study the interaction between high-density polyethylene (HDPE) grades as material for dangerous goods packagings and biofuels such as E85 and biodiesel. Jerricans made of two polyethylene (PE) grades were filled with these fuels and exposed to temperatures of 20°C and 40°C for 1 year. Tensile properties (tensile strength, breaking elongation and elasticity modulus) and melt flow rate (MFR) were determined once a month, and Fourier transform infrared (FTIR) spectroscopy was used to evaluate changes in the chemical structure. Measurements of the MFR and tensile properties of the PE grades after 1 year of exposure to E85 showed only a slightly damaging influence. An increase in the peak of 1585 cm-1 (C=C) stretching vibrations is visible in the FTIR spectra after the immersion tests with E85. Therefore, packagings made of HDPE grades are suitable for the transport of E85. An increase in the MFR with immersion time of the grades in biodiesel was measured, in particular, after 1 year of exposure. The elasticity modulus of the PE grades was reduced with immersion time. The FTIR spectra showed a broadening of the CO peak of 1740 cm-1 and the appearance of the hydroxyl group at 3500 cm-1. Both results are explained by secondary degradation products of the PE decomposition process caused by increasing unsaturated fatty acid content in the biodiesel. In light of the above mentioned, it was concluded that HDPE grades are not suitable as packaging materials for the transport of biodiesel. T2 - IAPRI 2013 - 26th Symposium on packaging CY - Espoo, Finland DA - 10.06.2013 KW - Polyethylene grades KW - Biodiesel KW - E85 KW - Tensile properties KW - FTIR analysis PY - 2013 DO - https://doi.org/10.1002/pts.2028 SN - 0894-3214 VL - 27 SP - 231 EP - 240 PB - Wiley CY - Chichester, UK AN - OPUS4-28696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of High Density Polyethylene Grades with Biofuels T2 - 26th IAPRI Symposium on Packaging 2013 CY - Espoo, Finland DA - 2013-06-10 PY - 2013 AN - OPUS4-28665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Brandt, S. T1 - Compatibility of high density polyethylene grades with bioethanol-gasoline blends and biodiesel T2 - EUROCORR 2012 - The European corrosion congress CY - Istanbul, Turkey DA - 2012-09-09 PY - 2012 SP - 1 EP - 12(?) AN - OPUS4-26534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Brandt, S. T1 - Compatibility of high density polyethylene grades with bioehanol-gasoline blends and biodiesel T2 - EUROCORR CY - Istanbul, Turkey DA - 2012-09-09 PY - 2012 AN - OPUS4-26683 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -