TY - JOUR A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Wellhausen, Robert A1 - Seitz, H. T1 - Interaction of a single-stranded DNA-binding protein g5p with DNA oligonucleotides immobilised on a gold surface N2 - We report surface plasmon resonance (spr) and confocal fluorescence results concerning the interaction of a gene-5-protein (g5p) with single-stranded DNA oligonucleotides (dT25) tethered to a gold surface. The spr data show that a highly stable g5p–ssDNA complex is readily formed on a gold surface with koff = 1.7 × 10-3 s-1. The extent of the complexion indicated involvement of the cooperative protein–protein interactions within the binding to DNA. In the experiments where dT25 coexist with g5p in the solution, the fluorescence data show that g5p also mediates the binding between the non-complementary oligonucleotides in the solution and those immobilised on the surface. KW - Single stranded DNA KW - g5p protein PY - 2012 U6 - https://doi.org/10.1016/j.cplett.2012.03.017 SN - 0009-2614 SN - 1873-4448 VL - 533 SP - 92 EP - 94 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-26525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Wellhausen, Robert A1 - Herrmann, S A1 - Seitz, H A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Zeman, J. A1 - Uhlig, F A1 - Smiatek, J A1 - Sturm, Heinz T1 - Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA N2 - Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms. KW - Aqueous solution KW - Biological structure KW - Raman spectroscopy KW - Organic osmolytes KW - High throughput KW - Gene-5 protein KW - Amino acid KW - Water structure PY - 2015 U6 - https://doi.org/10.1021/acs.jpcb.5b09506 SN - 1520-6106 SN - 1089-5647 SN - 1520-5207 VL - 119 IS - 49 SP - 15212 EP - 15220 AN - OPUS4-35800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -