TY - JOUR A1 - Backes, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Ziegler, K. A1 - Krevert, C. S. A1 - Tscheuschner, Georg A1 - Lucas, K. A1 - Weller, Michael G. A1 - Berkemeier, T. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. T1 - Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects N2 - The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO–). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution. KW - Protein KW - Nitrotyrosine KW - Dityrosine KW - Allergy KW - Hay fever KW - Diesel exhaust KW - Combustion KW - Exhaust PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529729 DO - https://doi.org/10.3390/ijms22147616 VL - 22 IS - 14 PB - MDPI CY - Basel AN - OPUS4-52972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ponader, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527581 DO - https://doi.org/10.3390/separations8050056 SN - 2297-8739 N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody screening by microarray technology - Direct identification of selective high-affinity clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often, critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence, a risky venture. We think that it is crucial to improve the screening process to eliminate most of the critical deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high-throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and performance of simultaneous competition experiments. The latter can also be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones, and blank supernatant containing fetal bovine serum was designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the immunoglobulin G (IgG) concentration, which is usually unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration are not feasible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media is used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system with simulated hybridoma supernatants, we conclude that this approach should be preferable to most other protocols leading to many false positives, causing expensive and lengthy elimination steps to weed out the poor clones. KW - ELISA KW - Immunoassay KW - Microarray KW - Lab-on-a-chip KW - Miniaturization KW - Aautomatisation KW - HTS KW - High-throughput KW - Screening KW - Fluorescence KW - Label KW - Hybridoma KW - Inhibition PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503361 DO - https://doi.org/10.3390/antib9010001 SN - 2073-4468 VL - 9 IS - 1 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-50336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Remmler, Dario A1 - Schwaar, Timm A1 - Pickhardt, M. A1 - Donth, C. A1 - Mandelkow, E. A1 - Weller, Michael G. A1 - Börner, H. T1 - On the way to precision formulation additives: 2D-screening to select solubilizers with tailored host and release capabilities N2 - A 2-dimensional high-throughput screening method is presented to select peptide sequences from large peptide libraries for precision formulation additives, having a high capacity to specifically host a drug of interest and provide tailored drug release properties. The identified sequences are conjugated with poly(ethylene glycol) (PEG) to obtain peptide-PEG conjugates that proved to be valuable as solubilizers for small organic molecule drugs to overcome limitations of poor water-solubility and low bio-availability. The 2D-screening method selects peptide sequences on both (i) high loading capacities and (ii) preferred drug-release capabilities as demonstrated on an experimental Tau-protein aggregation inhibitor/Tau- deaggregator with potentials for an anti-Alzheimer disease drug (BB17). To enable 2D-screening, a one-bead one-compound (OBOC) peptide library was immobilized on a glass slide, allocating individual beads to permanent positions. While the first screening step involved incubation of the supported OBOC library with BB17 to identify beads with high drug binding capacities by fluorescence scanner readouts, the second step reveals release properties of the high capacity binders by incubation with blood plasma protein model solutions. Efficiently peptides with high BB17 capacities and either keeper or medium or fast releaser properties can be identified by direct sequence readouts from the glass slide supported resin beads via matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Four peptides are synthesized as peptide-PEG solubilizers representing strong, medium, weak releasers and non-binders. Loading capacities reached up to 1:3.4 (mol drug per mol carrier) and release kinetics (fast/medium/slow) are in agreement with the selection process as investigated by fluorescence anisotropy and fluorescence correlation spectroscopy. The ability of BB17/conjugate complexes to inhibit the aggregation of Tau4RDΔK (four repeat Tau ((M)Q244-E372 with deletion of K280), 129 residues) in N2a cells is studied by a Tau-pelleting assay showing the modulation of cellular Tau aggregation. Promising effects such as the reduction of 55% of total Tau load are observed for the strong releaser additive. Studies of in vitro Thioflavin S Tau-aggregation assays show half-maximal inhibitory activities (IC50 values) of BB17/conjugates in the low micro-molar range. KW - Block copolymer KW - Drug transporters KW - Peptide library screening KW - Formulation additives PY - 2018 DO - https://doi.org/10.1016/j.jconrel.2018.06.032 SN - 0168-3659 SN - 1873-4995 VL - 285 SP - 96 EP - 105 PB - Elsevier CY - Amsterdam AN - OPUS4-45483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lemke, Nora A1 - El-Khatib, Ahmed H. A1 - Tchipilov, Teodor A1 - Jakubowski, N. A1 - Weller, Michael G. A1 - Vogl, Jochen T1 - Procedure providing SI‑traceable results for the calibration of protein standards by sulfur determination and its application on tau N2 - Quantitative proteomics is a growing research area and one of the most important tools in the life sciences. Well-characterized and quantified protein standards are needed to achieve accurate and reliable results. However, only a limited number of sufficiently characterized protein standards are currently available. To fill this gap, a method for traceable protein quantification using sulfur isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was developed in this study. Gel filtration and membrane filtration were tested for the separation of non-protein-bound sulfur in the protein solution. Membrane filtration demonstrated a better performance due to the lower workload and the very low sulfur blanks of 11 ng, making it well suited for high-purity proteins such as NIST SRM 927, a bovine serum albumin (BSA). The method development was accomplished with NIST SRM 927e and a commercial avidin. The quantified mass fraction of NIST SRM 927e agreed very well with the certified value and showed similar uncertainties (3.6%) as established methods while requiring less sample preparation and no species-specific standards. Finally, the developed procedure was applied to the tau protein, which is a biomarker for a group of neurodegenerative diseases denoted “tauopathies” including, e.g., Alzheimer’s disease and frontotemporal dementia. For the absolute quantification of tau in the brain of transgenic mice overexpressing human tau, a well-defined calibration standard was needed. Therefore, a pure tau solution was quantified, yielding a protein mass fraction of (0.328 ± 0.036) g/kg, which was confirmed by amino acid analysis. KW - Iinductively coupled plasma mass spectrometry KW - Isotope dilution KW - Quantitative protein analysis KW - Sulfur KW - SI traceability PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545200 DO - https://doi.org/10.1007/s00216-022-03974-z VL - 414 SP - 4441 EP - 4455 PB - Springer Verlag AN - OPUS4-54520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernevic, Bogdan A1 - El-Khatib, Ahmed H. A1 - Jakubowski, Norbert A1 - Weller, Michael G. T1 - Online immunocapture ICP‑MS for the determination of the metalloprotein ceruloplasmin in human serum N2 - The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32S mass trace. The ICP-MS signals were normalized on a 59Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS. KW - ELISA KW - Affinity chromatography KW - Affinity extraction KW - IgY KW - Chicken antibodies KW - Immunoaffinity extraction KW - Copper KW - Diagnostics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446157 UR - https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3324-7 UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM1_ESM.pdf UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM2_ESM.pdf DO - https://doi.org/10.1186/s13104-018-3324-7 SN - 1756-0500 VL - 11 IS - 1 SP - Article 213, 1 EP - 5 PB - Springer Nature CY - Heidelberg AN - OPUS4-44615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, Patrick A1 - Paul, Martin A1 - Mai, C. A1 - Böhme, A. A1 - Bondarenko, S. A1 - Weller, Michael G. A1 - Mai, A. T1 - A monolithically integrated microfluidic channel in a silicon-based photonic-integrated-circuit technology for biochemical sensing N2 - In this work, a cost-effective optofluidic system is proposed and preliminary experimental results are presented. A microfluidic channel monolithically integrated into a photonic integrated circuit technology is used in conjunction with a cyclic olefin copolymer (COC) substrate to provide fluidic in- and output ports. We report on initial experimental results as well as on the simple and cost-effective fabrication of this optofluidic system by means of micro-milling. KW - Biosensors KW - Biophotonics KW - Optical sensors KW - Photonic sensors KW - Ring resonators KW - Silicon photonics KW - Lab-on-a-chip KW - Microfluidics KW - Chip KW - Biochip PY - 2021 DO - https://doi.org/10.1117/12.2588791 VL - 11772 SP - 1 EP - 5 PB - SPIE AN - OPUS4-53559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Weller, Michael G. A1 - Martínez-Mánez, R. A1 - Rurack, Knut T1 - Immunochemical design of antibody-gated indicator delivery (gAID) systems based on mesoporous silica nanoparticles N2 - In this work, the optimization of the immunochemical response of antibody-gated indicator delivery (gAID) systems prepared with mesoporous silica nanoparticles has been studied along various lines of system tailoring, targeting the peroxide-type explosive TATP as an exemplary analyte. The mechanism of detection of these gAID systems relies on a displacement of an antibody “cap” bound to hapten derivatives anchored to the surface of a porous hybrid material, allowing the indicator cargo stored in the mesopores to escape and massively amplify the analyte-related signal. Since our aim was to obtain gAID systems with the best possible response in terms of sensitivity, selectivity, and assay time, sera obtained from different immunization boosts were screened, the influence of auxiliary reagents was assessed, structural hapten modification (hapten heterology) was investigated, and various indicator dyes and host materials were tested. Considering that highly selective and sensitive immunological responses are best obtained with high-affinity antibodies which, however, could possess rather slow dissociation constants, leading to slow responses, the main challenge was to optimize the immunochemical recognition system for a rapid response while maintaining a high sensitivity and selectivity. The best performance was observed by grafting a slightly mismatching (heterologous) hapten to the surface of the nanoparticles in combination with high-affinity antibodies as “caps”, yielding for the first time gAID nanomaterials for which the response time could be improved from hours to <5 min. The materials showed favorable detection limits in the lower ppb range and discriminated TATP well against H2O2 and other explosives. Further optimization led to straightforward integration of the materials into a lateral flow assay without further treatment or conditioning of the test strips while still guaranteeing remarkably fast overall assay times. KW - Antibody-gated indicator delivery systems KW - Signal amplification KW - Immunochemical response optimization KW - Test strip analysis KW - TATP KW - Explosives detection KW - Heterologous hapten PY - 2022 DO - https://doi.org/10.1021/acsanm.1c03417 SN - 2574-0970 VL - 5 IS - 1 SP - 626 EP - 641 PB - American Chemical Society CY - Washington, DC AN - OPUS4-54176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The Protocol Gap N2 - Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole. KW - Validation KW - Peer review KW - Experiment KW - Documentation KW - Scientific publication KW - Reproducibility crisis KW - Replication crisis KW - Trust KW - Citation KW - References KW - Surrogate citations KW - Impact PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521440 DO - https://doi.org/10.3390/mps4010012 SN - 2409-9279 VL - 4 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-52144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ DO - https://doi.org/10.1007/s00216-022-03910-1 SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - You, Yi A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. A1 - Riedel, Jens T1 - Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples N2 - An airborne high repetition rate laser-induced plasma was applied as a versatile ambient ionization source for mass-spectrometric determinations of polar and nonpolar analytes in solution. The laser plasma was sustained between a home-built pneumatic nebulizer and the inlet capillary of an Orbitrap mass spectrometer. To maintain stable conditions in the droplet-rich spray environment, the plasma was directly fed by the fundamental output (λ = 1064 nm) of a current state-of-the-art diode-pumped solid-state laser. Ionization by the laser-driven plasma resulted in signals of intact analyte ions of several chemical categories. The analyte ions were found to be fully desolvated since no further increase in ion signal was observed upon heating of the inlet capillary. Due to the electroneutrality of the plasma, both positive and negative analyte ions could be formed simultaneously without altering the operational parameters of the ion source. While, typically, polar analytes with pronounced gas phase basicities worked best, nonpolar and amphoteric compounds were also detected. The latter were detected with lower ion signals and were prone to a certain degree of fragmentation induced during the ionization process. All the described attests the laser-induced microplasma by a good performance in terms of stability, robustness, sensitivity, and general applicability as a self-contained ion source for the liquid sample introduction. KW - Laser KW - Laser-induced plasma KW - Ambient ionization KW - Mass Spectrometry PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00329 SN - 0003-2700 VL - 91 IS - 9 SP - 5922 EP - 5928 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-47939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Celasun, S. A1 - Remmler, D. A1 - Schwaar, Timm A1 - Weller, Michael G. A1 - Du Prez, F. A1 - Börner, H. G. T1 - Digging into the sequential space of thiolactone precision polymers: A combinatorial strategy to identify functional domains N2 - Functional sequences of precision polymers based on thiolactone/Michael chemistry are identified from a large one-bead one-compound library. Single-bead readout by MALDI-TOF MS/MS identifies sequences that host m-THPC that is a second Generation photo-sensitizer drug. The corresponding Tla/Michael-PEG conjugates make m-THPC available in solution and drug payload as well as drug release kinetics can be fine-tuned by the precision segment. KW - Combinatorial chemistry KW - Combinatorial polymer libraries KW - Sequence-defined oligomer KW - Precision polymer sequencing KW - Pseudo peptides KW - MALDI-TOF KW - ESI MS KW - Mass spectrometry KW - Sequencing KW - PEG KW - Polyethylene glycol KW - Solubilizer KW - Drug KW - Conjugates PY - 2019 DO - https://doi.org/10.1002/anie.201810393 SN - 1521-3773 VL - 58 IS - 7 SP - 1960 EP - 1964 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -